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1 Theory v. practice

www.longevitas.co.uk 3/67

http://www.longevitas.co.uk


Theory v. practice

“practice suggests problems essentially new for
science and thus challenges one to seek quite
new methods. And if theory gains much when
new applications or new developments of old
methods occur, the gain is still greater when
new methods are discovered”

Chebyshev [1856]
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2 About Longevitas
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2 About Longevitas

Founded 2006.

Based in Edinburgh.

Clients in UK, USA, Canada and Switzerland.

Research partnership with Heriot-Watt University.
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2 Services for actuaries

Experience analysis and mis-estimation:

Stochastic mortality projections and capital:

Rating pension schemes:
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3 The longevity-risk problem
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3 Trend v. one-year view

“Whereas a catastrophe can occur in an
instant, longevity risk takes decades to unfold”

The Economist [2012]
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3 Trend v. one-year view

Longevity trends emerge slowly over many years. . .

. . .but insurance regulations view risks as
single-year catastrophes.

How do you reconcile the two?

How do you fit a long-term risk into a short-term
view?
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3 Trend v. one-year view

Time for some Chebyshevian new methods:

Create new models just for this specific task, e.g
Plat [2011] and Börger [2010], or

Create a framework for existing projection models
like Lee and Carter [1992], Cairns et al. [2006].
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3 Trend v. one-year view

Solution from Richards et al. [2014]:

1. Pick a model and fit it to real data.

2. Use model to simulate next year’s experience data.

3. Refit the model using real and simulated data.
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3 Sensitivity of forecast
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Source: Lee-Carter example from Richards et al. [2014].
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3 Trend v. one-year view

Solution from Richards et al. [2014]:

1. Pick a model and fit it to real data.

2. Use model to simulate next year’s experience data.

3. Refit the model using real and simulated data.

4. Calculate liability value, x, with new model.

5. Discard simulated experience data from (2).

6. Repeat (2)–(5) a few thousand times.

Sample of liability values {x1, x2, . . . , xm}.
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3 Liability values

Our unknown liability is X (say).

VaR-style solvency capital:(
Qα

E[X]
− 1

)
∗ 100%

where Qα is α-quantile of X, i.e. Pr(X < Qα) = α.
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3 Simulated liability values

We don’t know the distribution of X . . .

. . . but we do have a sample {x1, x2, . . . , xm}.
Estimate E[X] from mean of sample.

Estimate Qα from sample using Harrell and Davis
[1982].
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3 One-year liability densities
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Source: Richards et al. [2017, Table 4].
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3 Value-at-risk

Wide variety of density shapes.

⇒ not all unimodal. . .

. . . and not all symmetric.

Considerable variability between models.

⇒ need to use multiple models. . .

. . . and exercise actuarial judgement.
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4 Multi-year view

www.longevitas.co.uk 19/67

http://www.longevitas.co.uk


4 Multi-year view

Richards et al. [2014] was for one-year insurer
solvency.

The same methodology has other applications. . .
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4 Multi-year view

Medium-term business planning:

3–5 years for insurer ORSA.

Ten-year “glide path” to buy-out for pension
schemes.
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4 Multi-year view

Take one-year framework from Richards et al.
[2014].

Extend time horizon to 3–5 years.

Reduce p-value to, say, 95%. . .
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4 Females, Lee-Carter model
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4 Females, APC model
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4 Females, Cairns et al. [2006]
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4 Males, Lee-Carter model
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4 Males, APC model
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4 Males, Cairns et al. [2006]
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4 Multi-year view

Considerable variability between models, as with
one-year view.

No consistent pattern in capital by term.

⇒ need to use multiple models. . .

. . . and exercise actuarial judgement (again!).
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5 Deferred annuities
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5 Deferred annuities

Most published work concerns immediate annuities
and pensions in payment.

What about deferred annuities and pensions?

Assume payment from age 65.

Compare VaR99.5% solvency capital for immediate
and deferred annuities.
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5 Solvency capital, Lee-Carter
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5 Solvency capital, APC model
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5 Solvency capital, Cairns et al. [2006]
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5 Deferred annuities

Depending on age, solvency capital for deferred
annuities can be double that of annuities in
payment.

Sharp differences in solvency capital by gender.
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6 VaR v. CTE
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6 VaR

Our unknown liability is X (say).

VaR-style solvency capital:(
Qα

E[X]
− 1

)
∗ 100%

where Qα is α-quantile of X, i.e. Pr(X < Qα) = α.
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6 CTE

Our unknown liability is X (say).

CTE-style solvency capital:(
E[X|X ≥ Qα]

E[X]
− 1

)
∗ 100%

where Qα is α-quantile of X, i.e. Pr(X < Qα) = α.
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6 VaR v. CTE

How does VaR capital compare to CTE capital?

CTEα > VaRα (obviously!)

But how does VaR99.5% compare to CTE99%?

Can calculate both from same sample. . .
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6 UK, Lee-Carter model
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6 UK, APC model

Age

C
ap

ita
l r

eq
ui

re
m

en
ts

 a
s 

%
 o

f b
es

t−
es

tim
at

e

50 60 70 80 90

2.5

3.0

3.5

4.0

4.5

5.0

5.5
Females, VaR99.5%
Females, CTE99%
Males, VaR99.5%
Males, CTE99%

Annuities in payment under APC(S) model. UK data ages 50–104, 1971–2016

www.longevitas.co.uk 41/67

http://www.longevitas.co.uk


6 UK, Cairns et al. [2006]
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6 Netherlands, Lee-Carter
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6 Netherlands, APC model
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6 Netherlands, Cairns et al. [2006]
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6 VaR v. CTE

Longevity trend-risk capital very comparable
between VaR99.5% and CTE99%.

CTE99% usually slightly more prudent than
VaR99.5%.

Difference usually under 0.1%.
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7 Managing longevity risk
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7 Managing longevity risk

Keep risk, or

Transfer risk, or

Hedge risk.
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7 Transferring longevity risk

Insurers historically used indemnity reinsurance to
manage risk.

“Indemnity” means the exact portfolio experience
is insured.

The insurer is left with no longevity risk. . .

. . .although there is a risk that the reinsurer might
fail (counterparty risk).
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7 Hedging longevity risk

However, insurers can also use hedging contracts.

The value of a hedging contract is supposed to
move in line with the liabiities.

The insurer is left with less longevity risk
(hopefully). . .

. . .although there is a risk that the hedge is
imperfect (basis risk).

How big is this risk?
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7 Index-based hedges

Define contract using population mortality.

Term n years.

At end of term, fit Lee-Carter model (say) and it
use to value annuity with unknown value X.

Use a function of X to close out the contract.

⇒ This is just another multi-year VaR calculation.
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7 Index-based hedges

Risk metric (annuity value) is X.

Only pay above attachment point, AP .

Pay no more than exhaustion point, EP .

Standardise payoff, h, as:

h(X) = max

(
0,min

(
X − AP
EP − AP

, 1

))
See Cairns and El Boukfaoui [2017] for detailed
discussion.
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7 Hedge payoff function
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7 Index-based hedges

Set AP = Qα1
and EP = Qα2

(α1 < α2).

Qα set with reference to Lee-Carter sample paths
over n years, i.e. an n-year VaR simulation.

Probability of payoff is 1− α1.

Mean payoff can be estimated from VaR results.
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7 Example hedge contract

n = 15 years.

Use Lee-Carter model for close-out calculation.

Follow Cairns and El Boukfaoui [2017] and set
AP = Q60% and EP = Q95%.

Probability of a payoff is 0.4.

Average payoff is 0.375 (from 5,000 simulations).
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7 Model risk

Lee-Carter model used for both sample paths over
n years and for payoff calculation.

Assume we keep the Lee-Carter model for payoff
calculation and also keep the same attachement
and exhaustion points.

What happens if the sample paths follow a
different model?
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7 Hedge assessment

Impact of different sample-path models on payoff:

Payoff Mean
Model prob. payoff

LC(S) 0.40 0.375
M5(S) 0.53 0.592
2DAC 0.80 0.434
M6 0.82 0.710

Source: own calculations using population data for males in Netherlands, ages 50–104, 1971–2016.

Annuity values discounted at 2% p.a.
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7 Hedge assessment

Model for future mortality is unknowable (model
risk).
So payoff probability and expected payoff are also
unknowable.

I What value should the hedge contract have on the
balance sheet?

I What solvency capital relief should be given?

⇒ Actuarial judgement required on both counts.
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7 Hedge assessment

How different can the answers get?

Consider the spread at various ages under CBD
model (M5). . .
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7 M5 sample paths — age 70

Close−out annuity factor (X) by age 70
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7 M5 sample paths — age 80

Close−out annuity factor (X) by age 80
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7 M5 sample paths — age 90

Close−out annuity factor (X) by age 90
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8 Conclusions
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8 Conclusions

Longevity trend risk can be put into a one-year
framework.

Same outputs can be used for both VaR- and
CTE-style solvency regimes.

Framework extends to ORSA for insurers. . .

. . .and “glide paths” to buy-outs

. . .and assessing index-based hedges.

Model risk is critical throughout.

Expert judgement required for solvency capital. . .

. . .and valuation of index-based hedges.
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