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Abstract

The projection of mortality rates is an essential part of valuing liabilities in life-insurance
portfolios and pension schemes. An important tool for risk-management and solvency purposes
is a stochastic projection model for mortality. We show that ARIMA models can be better
representations of mortality time-series than simple random-walk models. We also consider
the sometimes-overlooked issue of parameter risk in time-series models — formulae are given for
decomposing overall risk into undiversifiable trend risk (parameter uncertainty) and diversifiable
volatility.

Using the bootstrap approach from Pascual et al. (2004) we find that, while certain kinds
of parameter risk are negligible, others are too material to ignore. In our specific mortality
examples, a modification to the procedure from Pascual et al. (2004) reduced bias when boot-
strapping the variance of the volatility, σ2ε . The conclusions have relevance to projection models
used by insurers in the European Union under Solvency II.

Keywords: mortality projections, longevity trend risk, parameter risk, model risk, ARMA,
ARIMA, Solvency II.

1 Introduction
The Solvency II regime in the European Union (EU) requires a probabilistic model for the
various risks that an insurer carries on its balance sheet. In particular, Solvency II requires
that an insurer holds enough reserves to cover 99.5% of scenarios which might occur over a
one-year time horizon. The former ICA regime in the UK and the Swiss Solvency Test (SST)
in Switzerland are defined similarly, and with the same 99.5% requirement.

An important, non-diversifiable risk for many insurers is longevity trend risk, i.e. the un-
certainty over the future direction of mortality rates for annuitants. This same risk is present
in many corporate defined-benefit pension schemes, although such entities are not regulated in
the same manner as insurers. Longevity trend risk is the broad direction taken by mortality
rates over many years, as opposed to the year-on-year fluctuations which we will refer to as the
volatility. We note in passing that longevity trend risk unfolds over many years, so it does not
naturally fit into the one-year time horizon required by regulators in banking and insurance.
Some authors have proposed frameworks which address this: see Börger (2010), Plat (2011) and
Richards et al. (2014) for examples.

As advocated by Börger (2010), the most useful tool for investigating uncertainty over
longevity trend risk is a stochastic projection model. There is a wide choice of such models
in the literature, and a quantitative review of some of the most commonly used ones in actuarial
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work is given by Cairns et al. (2009). However, the choice of model — or models — often
involves significant judgement by the analyst: a change in model can lead to material changes
in the best-estimate reserves, while even within a model family there can be major differences
(Richards and Currie, 2009). This phenomenon of model risk is particularly important, and it
requires that analysts use more than one stochastic projection model when assessing longevity
trend risk.

A key driver of capital requirements for annuity business is the uncertainty over the trend of
future mortality rates, which can be measured as the variance of the mortality forecast values. In
this paper we consider the decomposition of this uncertainty into two parts: (i) the uncertainty
over the broad trend and (ii) the temporary volatility. In particular, we seek to investigate
their respective contributions to overall uncertainty, and thus to the capital requirements for
longevity trend risk. We will assume that the trend risk is synonymous with the uncertainty
over model parameters (more on this later), and we will consider under which circumstances (if
any) it is acceptable to ignore certain kinds of parameter uncertainty. We will illustrate with
reference to the model by Lee and Carter (1992), but the basic conclusions will apply to any
model which uses time-series methods to project a mortality index. We will also quantify the
respective contributions to capital requirements using a value-at-risk calculation suitable for
insurers operating under Solvency II.

Since parameter uncertainty is at the centre of our approach we will pay particular attention
to the finite-sample distribution of the relevant estimators. We do this by applying the para-
metric bootstrap method of Pascual et al. (2004) for ARMA processes. We found that, in our
specific mortality examples, a modification to the procedure from Pascual et al. (2004) reduced
the bias when applied to obtain bootstrap samples from certain parameters, in particular the
variance of the volatility.

The structure of this paper is as follows: Section 2 describes the data and model used to
produce the example time series we want to forecast. Section 3 outlines the structure of a random
walk for forecasting and considers the separation of forecast uncertainty into components due to
parameter uncertainty and volatility. Section 4 outlines the structure of an ARMA or ARIMA
process for time-series forecasting, while Section 5 considers the improvement in fit and forecast
over the random-walk model. Section 6 considers an alternative ARIMA model which does not
fit the data as well, but which has better forecasting properties, while Section 7 considers the
implications for insurer capital requirements. Section 8 considers a practical point for actuaries
in commercial work when calibrating the CMI spreadsheet for mortality projection. Section 9
discusses the results and Section 10 concludes the paper. To preserve the narrative flow of the
paper, the major mathematical proofs are presented separately in the appendices.

2 Data and example mortality index
The data used for this paper are the number of deaths Dx,y aged x last birthday during each
calendar year y, split by gender. Corresponding mid-year population estimates are also given.
The data therefore lend themselves to modelling the force of mortality, µx+ 1

2
,y+ 1

2
, without further

adjustment. However, for brevity we will drop the 1
2 and just refer to µx,y.

We use data provided by the Office of National Statistics (ONS) for the population of England
& Wales. For illustrative purposes we will just use the data for males. As we are primarily
interested in annuity and pension liabilities, we will restrict our attention to ages 50–104 over
the period 1971–2013. All death counts were based on deaths registered in England & Wales
in a particular calendar year and the population estimates for 2002–2011 are those after the
revision to take account of the 2011 census results. More detailed discussion of this data set,
particularly regarding the current and past limitations of the estimated exposures, can be found
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in Cairns et al. (2015).
To generate an example mortality index for forecasting, we fitted the model from Lee and

Carter (1992) to the data assuming a Poisson distribution for the number of deaths, i.e.

Dx,y ∼ Poisson
(
µx,yE

c
x,y

)
logµx,y = αx + βxκy (1)

where Ecx,y denotes the central exposure to risk at age x last birthday in calendar year y. The
parameter αx is broadly the average mortality level at age x, κy is the period mortality effect
and βx is the age-related modulation of κy. Since we will be working with only a subset of
historical data, we will henceforth index κ from 1 to t, where t is the number of years of data
and κt is the most recent observed value of κ from which point we want to project. In this
paper we will use the following notation: κt+h will denote a future, yet-to-be-observed value
of κ at time t + h; κt(h) will denote a projected value at time t + h where the projection is h
years ahead from time t and where the underlying process parameters are known; κ̂t(h) is the
equivalent of κt(h), but where the underlying process parameters are estimated. The difference
between κ̂t(h) and κt(h) is therefore the parameter risk, while the difference between κt(h) and
κt+h is the accumulated random error over h years. These differences are used in Appendices
A and C to decompose the overall risk into parameter and volatility components.

Following Brouhns et al. (2002) we estimate the parameters using the method of maximum
likelihood, rather than the singular-value decomposition of Lee and Carter (1992). The Lee-
Carter model is non-linear, so we fitted the model using the gnm() function in R (R Core Team,
2012). gnm() uses random constraints, so we then applied the constraints of Richards and
Currie (2009), i.e.

∑t
i=1 κi = 0 and

∑t
i=1 κ

2
i = 1, after fitting. Other constraint systems are

possible: Lee and Carter (1992) used
∑

x βx = 1, while Girosi and King (2008) used
∑

x β
2
x = 1;

different constraint systems produce different parameter values, but the same fitted values for
logµx,y. The resulting parameter estimates are shown in Figure 1, with the estimated values
for κ in Table 1. It is these κ values which must be projected, and this paper is about (i) the
options available for forecasting κ, (ii) the uncertainty over these projections, and (iii) how the
uncertainty may be decomposed into various sources of risk.

Figure 1: Parameter estimates for Lee-Carter model fitted to mortality data for males
in England & Wales aged 50–104 over the period 1971–2013.
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The κ values will be treated throughout this paper as if they are known quantities, but
it is worth noting that this is a simplification; in fact, the κ values are themselves estimates,
and there is thus uncertainty over their true underlying value, especially if the κ values are
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Table 1: Estimates of κ from Figure 1. t = 43,
t∑
i=1

κi = 0 and
t∑
i=1

κ2i = 1.

Year κ Year κ Year κ Year κ
1971 0.187305 1982 0.130861 1993 0.027859 2004 -0.152008
1972 0.205557 1983 0.123310 1994 -0.003255 2005 -0.168814
1973 0.192505 1984 0.103061 1995 -0.002242 2006 -0.188083
1974 0.186180 1985 0.113493 1996 -0.015946 2007 -0.202479
1975 0.179728 1986 0.099141 1997 -0.032266 2008 -0.213225
1976 0.185944 1987 0.077453 1998 -0.046641 2009 -0.238276
1977 0.162683 1988 0.070201 1999 -0.058118 2010 -0.251942
1978 0.166125 1989 0.060964 2000 -0.082013 2011 -0.275248
1979 0.163246 1990 0.047191 2001 -0.101537 2012 -0.279736
1980 0.146532 1991 0.040114 2002 -0.110974 2013 -0.282070
1981 0.134640 1992 0.022597 2003 -0.121817

estimated from the mortality experience of a small population. The true κ can be regarded as
a hidden process, since we cannot observe κ directly and can only infer likely values given the
random variation from realised deaths in a finite population. As a result, the estimated variance
of the volatility will in fact be an over-estimate, as the estimated κ values are subject to two
sources of variation. There is a parallel here to the concept of a Kalman filter, which models an
observable process (the estimated κ) which is itself a realisation of a hidden underlying linear
process (the true κ). The Kalman filter therefore allows for two types of noise: measurement
error and volatility. In this paper the parameters of κ will be estimated using R’s arima()

function, which uses a Kalman filter to estimate the parameter values for an ARIMA model,
but assuming that there is no measurement error.

Note that the κ values need not come from a Lee-Carter model — they may equally come
from any other stochastic mortality model with a time index, for example the Age-Period model.
Note also that in practical work we would smooth the αx and βx terms to reduce the effective
number of parameters being estimated: αx and βx show a high degree of regularity in Figure
1, which means far fewer than fifty parameters are needed to summarise the patterns. Such
a reduction in the effective number of parameters also tends to improve the properties of the
forecast values of µx,y — see Delwarde et al. (2007) and Currie (2013).

The results in this paper apply to a one-dimensional time index, but the main results regard-
ing the uncertainty about the drift of κ can be generalised to n-dimensional projection models
such as the CBD family (Cairns et al., 2009).

3 Modelling κ as a random walk
We suppose that the κ mortality index in Section 2 follows a random walk with drift, i.e.

κt+1 = κt + µ0 + εt+1 (2)

where µ0 is the (unknown) drift term and εt+1 is an error term with zero mean and constant finite
variance, σ2ε . This random-walk structure is perhaps the commonest approach to projecting κ,
although it is not necessarily the most realistic. In this paper we only consider a constant value
for µ0, although van Berkum et al. (2014) consider the alternative where µ0 remains constant
for a period of time and then changes to an alternative value.

Although the mathematics are straightforward, we set out the steps in detail as they make
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a useful comparison for the ARIMA model in Section 4. Under the random-walk model, the
realised values of κt+h (h steps ahead) are given by:

κt+h = κt + hµ0 +

h∑
j=1

εt+j (3)

Assuming for the moment that µ0 is known, and given the value for κt, we obtain a central
forecast h years ahead, κt(h), by setting all the error terms εt+j to zero, i.e.

κt(h) = κt + hµ0 (4)

However, since µ0 is unknown we replace it with an estimate, µ̂0, which is derived as follows:

µ̂0 =
1

t− 1

t∑
i=2

(κi − κi−1) =
κt − κ1
t− 1

(5)

where t is the number of κ terms (t = 43 in Table 1). In equation (5) we estimate µ0 using an
unbiased estimator µ̂0 which coincides with the MLE for the mean of the Normal distribution
(and for the mean of many other distributions besides).

Equations (4) and (5) gives us a forecast estimator h years ahead, κ̂t(h):

κ̂t(h) = κt + hµ̂0 (6)

For the variance of µ̂0 we have:

Var(µ̂0) = Var

(
κt − κ1
t− 1

)

=
1

(t− 1)2
Var

κ1 + (t− 1)µ0 +
t∑

j=2

εj − κ1


=

σ2ε
t− 1

(7)

For the data in Table 1 we obtain µ̂0 = −0.011176. Our estimate of σ2ε is the appropriate
sample variance, σ2ε :

σ̂2ε =
1

t− 2

t∑
i=2

(κi − κi−1 − µ̂)2 (8)

which gives σ̂2ε = 0.00011 (σ̂ε = 0.010512). Technically σ2ε is also a parameter being estimated,
and there is uncertainty over this estimate. However, for the purposes of this paper we are
concerned with parameter risk which affects the trend. The estimated standard error of µ̂0 is
therefore 0.001622.

The resulting central forecast, κ̂t(h), defined in equation (6) is depicted in Figure 2, where
we can see that the random-walk process is a poor representation of the past behaviour of κ. As
shown in equation (5), the random walk with drift just draws a line between the first and last κ
terms, ignoring the non-linear pattern in between. This is not a unique finding — van Berkum
et al. (2014) noted a similarly poor fit to modern Dutch data using a Lee-Carter model. We
therefore need to find a better model; van Berkum et al. (2014) used a random walk with drift
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Figure 2: Left panel: κ values from Figure 1 with random-walk forecast from equation
(6) with µ̂0 = −0.011176. The forecast line is also extended backwards, showing that
the random-walk model is a poor representation of the behaviour of the observed κ
process. Right panel: residuals, i.e. differenced κ minus µ̂0 = −0.011176, showing that
early values are more likely to have positive residuals and more recent values are more
likely to have negative ones.
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where µ0 was piecewise constant in time, whereas we will consider using an ARIMA model in
Section 4.

For risk management we are interested in (i) the uncertainty over κ̂t(h), and (ii) the relative
role of parameter uncertainty and volatility. We therefore look at the mean squared prediction

error, i.e. E
[(
κ̂t(h)− κt+h

)2]
. Using the result in Appendix A we find that this breaks down

into the sum of the parameter uncertainty (h2σ2ε /(t− 1)) and the volatility component (hσ2ε ):

E
[(
κ̂t(h)− κt+h

)2]
=

h

t− 1
hσ2ε︸ ︷︷ ︸

parameter
uncertainty

+ hσ2ε︸︷︷︸
volatility

(9)

where the parameter uncertainty is the variance of hµ̂0, i.e. h2Var(µ̂0) from equation (7). The
two components on the right hand side of equation (9) are related as follows:

Parameter uncertainty (variance of hµ̂0) =
h

t− 1
Volatility

Thus, if the projection horizon h is small, but a long history of data (t) is used, the volatility
component is much larger than the parameter uncertainty. Conversely, if the projection horizon
is long and the data history is short, parameter uncertainty is the larger component of overall
uncertainty. As we will see in Section 7, this is reflected in insurer capital requirements for
longevity trend risk under a value-at-risk calculation. We note from Figure 3 that the two com-
ponents of uncertainty have different shapes, and that uncertainty about κt+h due to volatility
dominates in the shorter term. However, eventually the parameter uncertainty about µ̂ domi-
nates. The crossover point is when h/(t − 1) = 1. Sampson (1991) shows that a similar result
holds for the asymptotic prediction error of ARIMA models, which we will explore in Section 4.
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Figure 3: κ values with forecast from random walk with drift with (i) 95% bounds for
parameter uncertainty and (ii) stochastic volatility. Panel (iii) shows the relationship
between the two sources of uncertainty over the course of the projection. Note the
wider range in panel (iv), reflecting the wider interval arising from including both
sources of uncertainty.
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4 Modelling κ as an ARMA or ARIMA process
We saw in Section 3 that the forecast uncertainty for a random walk with drift could be split
into two components: parameter uncertainty and volatility. However, we also saw in Figure 2
that a random walk with drift was a poor representation of the historical pattern of κ. As we
will see, κ is better represented as an ARIMA process, and the forecast uncertainty of such a
process can be analogously decomposed into parameter uncertainty and volatility.

We begin by defining an ARMA(p,q) process, X0
t , with zero mean:

X0
t = ar1X

0
t−1 + . . .+ arpX

0
t−p +ma1εt−1 + . . .+maqεt−q + εt (10)

where εt is a series of independent, identically distributed error terms with zero mean and
constant finite variance, σ2ε . The p autoregressive parameters and q moving-average parameters
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are to be estimated, and there will be uncertainty over these estimates which will contribute to
the overall forecast uncertainty. Moreover, there is also uncertainty about p and q which define
the model within the class of ARMA(p,q) processes. We will discuss the impact of choosing
specific values for p and q in Section 9 when we discuss model uncertainty. However, we restrict
ourselves to the family of stationary ARMA(p, q) processes for any orders p and q that we
consider.

Having defined the ARMA(p, q) process with a zero mean in equation (10), we can now use
it to define an ARMA(p, q) process with a non-zero mean, µ:

X = X0 + µ (11)

As in Section 3, we can calculate an estimate of the mean, µ̂:

µ̂ = X̄ =
1

t

t∑
i=1

Xi (12)

Since X is a stationary ARMA process, we have E[µ̂] = µ. Furthermore, using the derivation
in Appendix B we have the following result for the variance of µ̂:

Var (µ̂) =
Var(X0)

t
+

2

t

t−1∑
k=1

γ(k)

[
1− k

t

]
(13)

where γ(k) = Cov(Xt, Xt+k) is the auto-covariance function of X. Note that γ(0) = Var(X0
t )

by definition. Also note that (13) reduces to (7) if X is a sequence of independent random
variables, since γ(k) = 0 for all k 6= 0 in this case.

Asymptotically, we obtain for t→∞:

tVar (µ̂)→
∞∑

k=−∞
γ(k) (14)

if
∑∞

k=−∞ |γ(k)| <∞, see Appendix B and also Theorem 7.1.1 in Brockwell and Davis (1987).
Comparing equations (7) and (13) we see that the variance of µ̂ can be either higher or lower

than the variance of the estimated mean µ̂0 of a sequence of independent random variables.
Any dependencies between observations Xt and Xt+k can therefore either increase or decrease
the uncertainty about µ̂, depending on whether

∑t−1
k=1 γ(k)

[
1− k

t

]
is positive or negative. For

example, an AR(1) model with a negative autoregressive parameter would have lower parameter
uncertainty (about the mean) than a model where X0 is a sequence of independent variables.

In empirical studies the autocovariance function γ(k) in equation (13) is not known. There-
fore, the variance of µ̂ needs to be estimated. We compared the accuracy of three different
approaches to obtain an estimate for Var (µ̂). In our first approach we replaced γ(k) by the
sample autocovariances obtained from observed values of X. We found in simulation studies
that the estimated values of γ(k) for large values of k were unreliable (the estimator γ̂(k) has a
large variance) and therefore, the estimated value of Var (µ̂) was also unreliable. An alternative
approach is to fit an ARMA model to X and then use the theoretical autocovariance function
γ(k) based on the estimated parameters of the fitted ARMA model. We found that this ap-
proach provided reasonable estimates of Var (µ̂). However, while this second approach will give
us the variance for µ̂, it will not give us information on possible extreme values. In insurance
work we are primarily interested in extreme quantiles like the 99.5% point, so in our empirical
study in Sections 5 and 6 we adopted a third approach: we used a parametric bootstrap proce-
dure to obtain the full distribution, and in particular, the variance of µ̂ directly from bootstrap
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realisations of µ̂ without the need to find the autocovariance function γ(k) of X first. This third
approach was used for consistency in the treatment of uncertainty over the ARMA parameters
and µ, but also in generating a full distribution for the exploration of extremes. We will see the
importance of this in Section 5.

We also note that the estimator µ̂ = X̄ is not the maximum-likelihood estimator for µ
unless the ARMA process is a sequence of independent random variables. In general, the MLE
for µ̂ will depend on the (estimated) ARMA parameters. To illustrate this point we show the
derivation of the MLE for µ for an AR(p) process in Appendix D (see also Harvey (1981) for
the case for an AR(1) process). We find that the MLE is very close to the mean X̄ for small
values of p. Furthermore, both estimators are unbiased. However, since the MLE for µ depends
on the estimated ARMA parameters and the order of the ARMA model, different estimates
for µ will be obtained when the order of the model is changed. We therefore argue that the
mean µ̂ = X̄ is a more robust alternative to the MLE. Being able to estimate µ independently
of other parameters also has the advantage that the process X0 can be fitted to appropriate
models using maximum likelihood, least squares or other methods without re-estimating µ. For
all these reasons we prefer µ̂ = X̄ compared to the MLE for µ. A short discussion of the mean
compared to the best linear unbiased estimator (BLUE) can be found in Brockwell and Davis
(1987, p213). They argue that since the asymptotic variances in equation (14) are equal for
both estimators, they use the simple estimator µ̂.

Although using the sample mean X̄ as an estimator for µ̂ means that the estimated value
of µ̂ will be independent of the fitted ARMA model, the estimated standard error of µ̂ will
depend on the chosen ARMA model and the fitted parameters since we do not use the empirical
autocovariances in equation (13) for the reasons explained earlier.

We can thus model the period effect κ in our Lee-Carter model as an ARMA(p, q) process
by setting κ = X. Alternatively, and more realistically, we can model κ as an ARIMA(p, 1, q)
process:

κt = κt−1 +Xt = κt−1 +X0
t + µ ∀ t > 1 (15)

where κ1 is a given constant or a random variable independent of the process X. The realised
value of κ, h steps ahead, is as follows:

κt+h = κt+h−1 +Xt+h

= κt+h−1 +X0
t+h + µ

= κt+h−2 +X0
t+h−1 +X0

t+h + 2µ

...

= κt +

h∑
i=1

X0
t+i + hµ (16)

with X0
t+h given by equation (10). It is possible to model κ using an ARIMA(p, d, q) process

with d > 1, but we will restrict our attention to d = 1 here. Note that with d = 1 we are
modelling improvements in κ, i.e. relative changes, whereas with d = 2 we would be modelling
changes in the rate of improvement, i.e. acceleration or deceleration in improvements.

We can now define h-step ahead projections for κ as in the previous section, that is:

κt(h) = κt +
h∑
i=1

X0
t+i + hµ

κ̂t(h) = κt +
h∑
i=1

X̂0
t+i + hµ̂
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where we set all error terms εt+h = 0 for all h > 0 in equation (10) to obtain projected values for
X0, and we define X̂0 as in equation (10) but with the coefficients ai and bi, and the residuals
ε up to time t being replaced by their estimated values.

The ARIMA model is a generalisation of the random-walk model — in each case µ̂0 (for
a random walk with drift) and µ̂ (for an ARIMA model) play analogous roles. However, it is
interesting to note how quickly µ̂ can come to dominate the projected κ̂t(h) for an ARIMA
model, i.e. where the ε values are set to zero for the central forecast. For example, in an
ARIMA(0,1,q) model the influence of the last observed ε terms ceases after q + 1 years, as per
equation (10). Similarly, the closer the autoregressive parameters are to zero, the quicker µ̂
dominates the forecast as we discuss in detail in Section 9. Since the impact of these moving-
average and autoregressive parameters can be quickly dominated by µ̂, it suggests that the
uncertainty over them might also be dominated by the uncertainty over µ̂.

5 Fitting an ARIMA model for κ
To fit an ARIMA model we need to make a choice over the values of p, d and q. In the
remainder of this paper we will set d = 1 and consider values of p and q in {0, 1, 2, 3}. We
apply maximum-likelihood estimators as implemented in the statistical software R, see R Core
Team (2012), to obtain estimated values of the coefficients ai and bi in equation (10). We then
use the information criterion from Akaike (1987) with the small-sample correction from Hurvich
and Tsai (1989) to select our final model. Table 2 shows the AICc values when the various
ARIMA(p, 1, q) models are fitted to the data in Table 1, showing that the best-fitting model is
ARIMA(1,1,2). The same model is selected if we target the BIC or the AIC without the small-
sample correction. The estimated parameter values for the ARIMA(1,1,2) model are shown in
Table 3.

Table 2: AICc values for various ARIMA(p, 1, q) models.

q
p 0 1 2 3
0 -260.16 -259.54 -260.81 -262.78
1 -260.22 -257.88 -269.83 -267.14
2 -258.10 -261.00 -267.14 -264.58
3 -258.95 -262.60 -264.17 -261.29

Table 3: Parameter estimates for ARIMA(1,1,2) model fitted to κ values in Table 1.
Source: arima() function in R Core Team (2012) for ar1, ma1, ma2 and σ2ε , equations
(12) and (13) for µ̂.

Standard
Parameter Estimate error
ar1 0.935 0.060
ma1 -1.577 0.173
ma2 0.815 0.149
σ2
ε 0.000068 n/a
µ̂ -0.011 0.002

As mentioned earlier the estimate for µ is obtained using (12) rather than the maximum
likelihood estimator implemented in R’s arima function. The reported standard error for µ̂ is
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therefore not based on the information matrix of the MLE, but on a bootstrap sample which
we explain below. Also, while we are comfortable enough with the estimated values in Table 3,
we are less comfortable with the standard errors: for example, adding more than one standard
error to ar1 would make the process non-stationary. As an alternative to these standard errors,
we use bootstrapping to investigate the finite-sample distribution of ar1, ma1, ma2 and σ2ε (see
Figure 5).

The forecast for the model in Table 3 is shown in Figure 4, together with the residuals.
Figure 4 can be compared and contrasted directly with Figure 2. The first point of note is
that the residuals look better for the ARIMA(1,1,2) model: not only are the ARIMA residuals
smaller with a narrower range, but the ARIMA residuals are better distributed over time. The
ARIMA model is clearly a better fit. The second point of note is that the central forecast seems
to be a more natural extrapolation of the historical κ values. In particular, there is a visible
curvature to the central forecast, which arises from the autoregressive component of the ARIMA
model.

Figure 4: Left panel: κ values from Figure 1 with ARIMA(1,1,2) forecast from Table
3. Right panel: residuals from the ARIMA fit.
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Having established that an ARIMA model is both a better fit to the κ process and seems
to be a more natural extrapolation than a random walk with drift, we now turn to the subject
of parameter uncertainty. Appendix C shows the decomposition of forecast uncertainty in an
ARIMA model into (i) parameter uncertainty (the variance of µ̂, the variance of the autoregres-
sive terms and the variance of the moving-average terms) and (ii) volatility. We are interested
in the variance contributions for the various parameters, but, as noted in Appendix C, there are
no closed-form expressions for the uncertainty over the parameters.

Instead, we use the bootstrap methodology described by Pascual et al. (2004). For a given
ARIMA(p, d, q) model and fitted parameters, the approach is to take a short sample of the
time series and simulate further values assuming the fitted parameters are known with certainty
(we are only using d = 1 in this paper). The length of the simulated extension is such that
the length of the new sequence — the fixed values plus the newly simulated values — is the
same length as the original sample. An ARIMA model with the same order is fitted to the new
sequence, i.e. new parameter values are estimated. The process is repeated 1,000 times, say,
and the resulting distribution of each parameter value is the bootstrap estimate.

Following Pascual et al. (2004) our bootstrap procedure therefore consists of the following
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steps, assuming that we have observed the process κ for T + 1 years, i.e. we have observations
κ0, . . . κT :

1. define Xt = κt − κt−1, estimate µ with µ̂ = X̄ and define X0
t = Xt − µ for t = 1, . . . , T

2. fit an ARMA(p,q) model to obtain the vector θ0 = (âr1, . . . , ârp, m̂a1, . . . , m̂aq, σ̂
2
ε) of

estimated parameters where âri and m̂ai are the estimates for the parameters ari and mai
in equation (10) and σ̂2ε is the estimated variance of εt; the estimated parameters for our
data are given in Table 3

3. simulate N trajectories of an ARMA(p,q) process according to (10) with parameter vector
θ0; each trajectory X(k) = {X1(k), . . . , XT (k)} for k = 1, . . . , N is of length T starting
from initial values x1(k), . . . , xp(k); and initial residuals ε1(k), . . . , εq(k); all other residuals
are drawn from a normal distribution N(0, σ̂2ε)

4. estimate the parameter vector θ for each simulated trajectory to obtain the estimated
parameter vector θ(k) for trajectory k; also estimate the mean as µ(k) = X̄(k) to obtain
bootstrap realisations of µ̂ which we then use to calculate its variance as mentioned in
section 4 since the autocovariance function γ in equation (13) is not observed.

Pascual et al. (2004) used the same initial fixed sequence for each simulation in step 3, i.e.
x1(k), . . . , xp(k) and ε1(k), . . . , εq(k) in step 3 do not depend on k. In contrast, here we have
randomly sampled a contiguous segment of the time series X to avoid any dependency on the
choice of the fixed initial sequence. It might strike readers as unusual to not use the most recent
κ values as the fixed sequence in this bootstrap procedure, but the log-likelihood in Harvey
(1981, p122, equation 2.2) shows that this should have a small impact on the estimation of the
autoregressive and moving-average parameters. The choice of a fixed initial sequence can have
a material impact on the estimation of σ2ε , however, as shown later in the comparison of Figures
8 and 9. The resulting bootstrap estimates for the distributions of the parameters are shown in
Figure 5.

In our empirical example we consider bootstrap samples with a sample size N = 1, 000. We
found that some to the trajectories simulated in step 3 of the above bootstrap procedure do not
seem to correspond to a stationary ARMA(p, q) model, and therefore R’s arima function fails to
estimate the parameters. For this reason, some of the resulting bootstrap samples contain less
than 1,000 simulated realisations of the estimated paramter values. Nonparametric estimates
of the densities of the resulting bootstrap sample are shown in Figure 5 for the parameters of
the ARIMA(1,1,2) model fitted to the observed period effect κ. For this specific example we
found that two out of the 1,000 simulated trajectories for X do not correpond to a stationary
ARMA(1,2) process, that is, the effective number of simulated trajectories is N=998.

We can use the results from Figure 5 to investigate the relative contribution to uncertainty
from each source: (i) uncertainty over µ̂, (ii) uncertainty over the ARMA parameters, (iii)
uncertainty from volatility and (iv) uncertainty from volatility including uncertainty over the
value of σ2ε . These four cases are plotted in Figure 6. The bottom two panels show that there is
no practical difference from considering the uncertainty over σ2ε , i.e. the estimate of σ2ε in Table
3 is all we need to consider for the volatility.

Figure 6 reveals a number of important differences when compared with the relevant panels in
Figure 3 for a random walk with drift. One feature is the different initial shape of the confidence
bounds for volatility only: with the random-walk model, there is an immediate bulge in the first
year of projection in Figure 3(ii), whereas for the ARIMA(1,1,2) model the first year shows no
such bulge in Figure 6(ii). The reason lies in the contrast between structures of the models.
Consider equation (9) for the random walk: with no parameter risk the first term is zero and so
the variance of the random-walk forecast is linear in terms of the projection horizon, h. This is
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Figure 5: Estimated densities of ar1, ma1, ma2 and σ2ε parameters for ARIMA(1,1,2)
model fitted to data in Table 1. The dashed vertical lines show the estimated values for
each parameter from Table 3. Density estimation is done according to the procedure
from Pascual et al. (2004).
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because the difference κt+h − κt involves the addition of h i.i.d. ε terms. This means that the
standard error of the forecast increases in line with

√
h and this gives a rapid initial expansion of

the confidence interval, followed by slower expansion later on. The ARIMA model in equation
(10) also has a projection which involves the addition of i.i.d. ε terms, but the structure of
the model means that κt+h − κt is not the straightforward sum of these terms. The structure
of the ARIMA model introduces correlations that are not present in the drift model, both via
the autoregressive and moving-average terms. These correlations mean that the variance of the
forecast is not linear in terms of h, and so the standard error of the forecast does not behave
like
√
h.

In Figure 3(iii) we see that the parameter uncertainty over µ̂ in a drift model eventually
dominates the uncertainty due to volatility. In contrast, a comparison of Figure 6(i) with either
panel (iii) or (iv) suggests that the uncertainty due to volatility remains dominant. Finally,
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Figure 6: Forecast κ values from ARIMA(1,1,2) model in Table 3 with 95% bounds
for various kinds of uncertainty.
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particular comment is required for Figure 6(ii); at first glance, the confidence interval looks
wrong for the central projection — the confidence interval is nowhere near symmetric around the
central projection, not even for the first year. However, there is no mistake — the strange-looking
confidence bounds in relation to the central projection are a consequence of the highly skewed
distribution of the ar1 parameter in Figure 5. For the ARIMA(1,1,2) model, the largest single
component of parameter uncertainty is the uncertainty over the ARMA parameters, particularly
the uncertainty over the ar1 parameter.

6 Alternative ARIMA models for κ
In Section 5 we used an ARIMA(1,1,2) model because this produced the lowest AICc when fitted
to the data (see Table 2). However, Figure 5 shows that the estimated parameter values are
not robust - the ar1 parameter in particular is close to 1, where values of 1 or more would make
the process X non-stationary. A consequence of this lack of robustness is the large impact of
the uncertainty over the ar1, ma1 and ma2 parameters on simulated future mortality scenarios,
as shown in in Figure 6(ii). This suggests that goodness of fit to past data should perhaps
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not be the sole criterion for model selection. To illustrate this, we show some results for the
ARIMA(1,1,0) model, i.e. a pure integrated AR(1) model with drift term. Table 2 shows that
this is a materially poorer fit to the past data than the ARIMA(1,1,2) model used in Section 5,
and that the AICc is almost identical to the AICc of the random-walk model.

The estimated parameter values for the ARIMA(1,1,0) model are shown in Table 4. We note
that the estimated value for σ2ε is very similar to the estimated value of σ2ε in the random-walk
model, which is in line with the very similar AICc values for those two models. This parameter
is significantly smaller in the ARIMA(1,1,2) model indicating that the two moving-average
parameters improve the fit of the model. We also find that the estimated ar1 parameter is very
different from the estimated ar1-parameter in the ARIMA(1,1,2) model. This leads to a very
different behaviour of the central projection, as shown in Figure 7. Indeed, for the ARIMA(1,1,0)
model we find that the ar1 parameter is rather close to zero, so that the uncertainty about this
parameter is not relevant for the uncertainty about the central mortality projection — see
Figures 8 and 10. The central projection for the ARIMA(1,1,0) model is almost identical to the
central projection obtained with a random-walk model.

Table 4: Parameter estimates for ARIMA(1,1,0) model fitted to κ values in Table 1.
Source: arima() function in R Core Team (2012) for ar1 and σ2ε , equation (12) for
µ̂. The standard error of µ̂ is obtained from the sample standard deviation of the
bootstrap sample {µ(k), k = 1, . . . , N}.

Standard
Parameter Estimate error
ar1 -0.259 0.166
σ2
ε 0.000102 n/a
µ̂ -0.011 0.002

Figure 7: Left panel: κ values from Figure 1 with ARIMA(1,1,0) forecast from Table
4. Right panel: residuals from the ARIMA(1,1,0) fit.
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Figure 8: Estimated densities of ar1 and σ2ε parameters for ARIMA(1,1,0) model fitted
to data in Table 1. The dashed vertical lines show the estimated values for each
parameter from Table 4. Density estimation is done according to the procedure from
Pascual et al. (2004).
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Figure 9: Estimated densities of ar1 and σ2ε parameters for ARIMA(1,1,0) model fitted
to data in Table 1. The dashed vertical lines show the estimated values for each
parameter from Table 4. In contrast to Figure 8, the bootstrapping procedure of
Pascual et al. (2004) is modified to randomly select initial sub-series from the data; a
comparison with Figure 8 shows that this has reduced the bias for σ2ε .
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Figure 10: κ values with forecast from ARIMA(1,1,0) model with 95% bounds for
various kinds of uncertainty.
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7 Impact on value-at-risk-style capital requirements
The confidence intervals in Figures 3 and 6 are based on a run-off approach to projection.
However, under the Solvency II regulatory regime in the European Union, insurers using internal
models need to calculate reserves using a one-year, value-at-risk (VaR) approach. In this section
we look at the impact of the various sources of uncertainty on capital requirements calculated
using the VaR methodology of Richards et al. (2014). The VaR methodology involves using the
fitted projection model to repeatedly simulate one year’s additional mortality experience, then
refitting the model and using the resulting updated central forecast to value an annuity liability.

For each of 1,000 VaR simulations we simulate the extra year’s experience using three al-
ternative combinations. The first option (labelled “Volatility only” in Table 5) means σ2ε is set
to its estimated value and one new ε error term is simulated for the moving-average process
for each of the 1,000 simulations; all other parameters — ARMA parameters and the mean —
are fixed at their estimated values and there is no parameter uncertainty. The second option
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(labelled “Trend risk only” in Table 5) means the ARMA parameters and the mean (drift) term
come from a single bootstrap realisation; σ2ε is set to zero and there is therefore no volatility
in the moving-average process. The third option (labelled “Trend risk and volatility combined”
in Table 5) means the ARMA parameters and the mean term come from a single bootstrap
realisation, together with σ2ε set to its estimated value and one error term simulated for the
moving-average process. Splitting the sources of uncertainty in this way allows us to examine
the size of the various contributions made to the overall capital requirements.

The results for a value-at-risk assessment of longevity trend risk are given in Table 5. We
have used a Lee-Carter model without smoothing fitted to the mortality data for males aged
50–104 in England & Wales over 1971–2013. All ARIMA models have been fitted with a non-
zero mean. The factors in Table 5 are for temporary, continuously-paid annuities to a single life
aged 70 at outset, with cashflows discounted at 2.5% per annum.

Table 5: Sensitivity of VaR capital requirements to various ARIMA models and the
sources of uncertainty included. There is one bootstrap realisation of the ARMA and µ
parameters per VaR calculation, but not all bootstrap realisations produce stationary
models.

Bootstrap Trend VaR
Model simulations Volatility uncertainty ā50%

70:35
ā99.5%
70:35

capital

ARIMA(0,1,0) 1000 Yes No 12.50 12.70 1.62%
1000 No Yes 12.50 12.54 0.33%
1000 Yes Yes 12.49 12.72 1.79%

ARIMA(0,1,1) 1000 Yes No 12.51 12.68 1.32%
1000 No Yes 12.51 12.56 0.34%
1000 Yes Yes 12.51 12.69 1.44%

ARIMA(1,1,0) 1000 Yes No 12.51 12.68 1.36%
1000 No Yes 12.51 12.55 0.31%
1000 Yes Yes 12.51 12.69 1.43%

ARIMA(1,1,1) 1000 Yes No 12.50 12.67 1.37%
1000 No Yes 12.51 12.56 0.37%
1000 Yes Yes 12.51 12.69 1.44%

ARIMA(1,1,2) 1000 Yes No 12.59 12.87 2.25%
994 No Yes 12.53 12.61 0.63%
994 Yes Yes 12.53 12.87 2.70%

Table 5 shows that for many simple models the uncertainty over the ARMA parameter
values and the mean makes only a modest additional contribution to the capital requirements.
Value-at-risk calculations are driven by the variability of mortality experience over a one-year
horizon and how the model fit responds to this. The reason why the volatility makes the largest
contribution in Table 5 is the same point as made at the end of Section 3 for the random walk:
the relative influence of volatility and parameter risk depends on the projection horizon and
the length of the data series. In the case of VaR calculations, the projection horizon is just one
year, thus maximising the influence of the volatility. This applies even for the ARIMA(1,1,2)
model, where the parameter uncertainty shown in Figure 6 is very large. In contrast to the
other models in Table 5, the parameter uncertainty of the ARIMA(1,1,2) model in Figure 6(ii)
leads to a material additional capital requirement. This is perhaps surprising for the model
which best fits the data, as demonstrated by Table 2. However, Table 5 gives another hint
as to why the ARIMA(1,1,2) produces the greatest capital requirements: it is the only model

18



where the bootstrapped ARMA parameter values sometimes produced non-stationary models,
as evidenced by the reduced number of usable parameter sets from bootstrap simulation (994
instead of 1,000). The ARIMA(1,1,2) model might fit the data best, but it is less stable and
produces higher capital requirements as a result.

8 Comparison with CMI projections
The CMI is the part of the UK actuarial profession that produces reference mortality tables and
occasional mortality forecasts for use by insurers and pension schemes. One such forecasting
tool is described in Continuous Mortality Investigation (2009), and it has been updated more
or less annually since. This tool takes the form of an Excel spreadsheet and it is in wide use
throughout the UK, both for annuity portfolios and pension schemes.

The CMI spreadsheet works with relative mortality-improvement rates, rather than mortality
rates. A mortality improvement is defined as 1 − qx,t/qx,t−1, where qx,t is the probability that
an individual alive aged x at the start of year t will die before the end of the year. See Willets
(1999) for more detailed discussion of mortality improvements in insured portfolios and the
wider population.

The CMI spreadsheet operates by user input of the assumed long-term rate of mortality
improvement and the current rates of mortality improvement are then blended towards this
value. There are over a thousand parameters which can be used by the user to customise the
rate of blending by calendar year, age or year of birth. The CMI spreadsheet is therefore a
deterministic targeting method of projection, as opposed to a stochastic model with parameters
set by fitting to experience data.

The setting of the long-term mortality-improvement rate in the CMI spreadsheet is done
subjectively, although some users set it with reference to average rates of improvement in the
relevant population. We can relate this long-term rate to the means of the models in this paper
as follows:

1− qx,t
qx,t−1

≈ 1− µx,t
µx,t−1

= 1− eαx+βxκt

eαx+βxκt−1
From equation(1)

= 1− eβx(κt−κt−1)

= 1− [1 + βx(κt − κt−1) + . . .] Expanding exas a Maclaurin series

≈ −βx(κt − κt−1) (17)

Using equation (2), the approximate mortality improvement in equation (17) becomes−βx(µ0+
εt), which has expected value−βxµ0. The mean of a random walk model, µ̂0, could therefore only
be appropriate for setting the long-term improvement rate in the CMI projection when it is mod-
ulated by the appropriate value of βx. From Figure 1 we see that βx > 2,∀x ∈ {54, 55, . . . , 75}.
Using µ̂0 = −0.011176, a best-estimate long-term rate for the CMI spreadsheet using the
random-walk model would therefore be in excess of 2% for ages 50–78 inclusive, although the
appropriate long-term rate declines sharply for higher ages: it is under 1% for ages over 89 and
is effectively zero by age 100. A stressed value of the long-term rate for reserving purposes could
be obtained by adding the appropriate number of standard errors to µ̂0. However, whether
it makes sense to take a parameter from a random-walk model and use it as a parameter for
the CMI spreadsheet is a matter for actuarial judgement, especially in conjunction with the
thousand other parameters which can be varied.
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9 Discussion
We have considered three ARIMA(p,1,q) models for the period effect κ in the previous sections:
ARIMA(0,1,0) (the random-walk model), ARIMA(1,1,2) and ARIMA(1,1,0). All three seem to
be reasonable models to use for generating scenarios for future mortality. In this section we
discuss some of the advantages and disadvantages that each model offers, focusing in particular
on the impact of the selected model on mortality projections.

All three models have in common that they are integrated of order one, and therefore, the
first difference of κ is modelled as a stationary process with a non-zero mean. If follows that
the improvement rate of projected mortality rates will eventually approach this mean. However,
the models differ significantly in the speed with which the improvement rate converges to this
long term value. The autoregressive coefficient, ar1, in equation (10) plays a central role for
the behaviour of mortality projections. For a random-walk model we have ar1 = 0, and for the
other two models the estimated values of ar1 are reported in Tables 3 and 4.

The importance of ar1 can be seen when central projections are considered, i.e. where we
set future error terms ε to zero. The projected values X0

t (h) based on the model in equation
(10) and observations up to time t are then given by:

h ARIMA(0,1,0) ARIMA(1,1,0) ARIMA(1,1,2)

1 X0
t (1) = ar1X

0
t X0

t (1) = ar1X
0
t +ma1εt +ma2εt−1

2 X0
t (2) = ar21X

0
t X0

t (2) = ar1X
0
t (1) +ma2εt

> 2 X0
t (h) = arh−21 X0

t (2)

Therefore, if ar1 = 0 (the random-walk model) then X0
t (h) = 0 for all values of h. For the

other two models, long-term projections depend on the value of ar1 and the two-years-ahead
forecast X0

t (2) which in turn is determined by the last observations of κ. Consequently, if ar1 is
rather large (ar1 ≈ 1) the central projection of X0 converges slowly to zero, and the increment
of κ tends to µ only very slowly. This is the case for the ARIMA(1,1,2) model, and it can be
seen in Figure 4 that the decrease in κ is stronger for the first few projected values and only for
longer term projections κ behaves like a linear function with slope µ. On the other hand, the
estimated ar1 parameter is rather small for the ARIMA(1,1,0) model and, therefore, the impact
of past κ values on central projections vanishes very quickly, see the virtually linear projection
of κ in figure 7.

Turning to a quantitative comparison of the proposed models, we start with the random
walk model in Section 3 and the ARIMA(1,1,0) model in Section 6. We note that the AICc
values for those two models in Table 2 are almost identical. In addition, the central projections
shown in Figures 2 and 7 are very similar and can be considered identical for practical purposes.
Moreover, the uncertainty about ar1 in equation (10) has no significant impact on the width
of the prediction interval for κ as can be seen in Figure 10. The reason for those similarities
is that the estimated ar1 is rather close to zero. As a result, the process X0 in equation (10)
converges very quickly to zero when the error terms are set to zero, as can be seen from the above
formulae for the central projections. However, comparing the difference between the width of
the prediction intervals in Figures 3(iii) and 10(iii) we find that volatility is less important in the
ARIMA(1,1,0) model compared to the random-walk model, and that therefore, the uncertainty
about the drift becomes the leading source of uncertainty for relatively short forecast horizons.

In contrast to the rather similar random-walk and ARIMA(1,1,0) models, the ARIMA(1,1,2)
model behaves very differently. The estimated ar1 is close to 1, showing that the inclusion of
moving-average terms has a significant impact on the estimated value of ar1 in equation (10).
The convergence of X0 to its long term mean 0 is therefore much slower with a large value of
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ar1. As a result, the projected value of X0
t (h) depends on the two-steps-ahead forecast X0

t (2),
which is the last projected value still depending on the MA-parameters. Therefore, since the
estimated ar1 is rather large, uncertainty about this parameter, but also the last observed values
of κ have a strong impact on long term projections in the ARIMA(1,1,2) model.

This raises questions about the robustness of the central projection of the ARIMA(1,1,2)
model. From the density plot for âr1 in Figure 5 we observe that the bootstrap realisations of the
estimator âr1 are concentrated at values close to one with a rather small variance, which seems
to be particularly small compared to the variance of the same estimator in the ARIMA(1,1,0)
model, see Figure 8. However, the above arguments show that even small variations in the ar1
coefficient might have a substantial impact on the central projection of mortality rates since
ar1 is close to 1. This observation is confirmed by the wide prediction intervals in Figure 6(ii)
showing that projected mortality rates are very sensitive to changes in ar1.

The sensitivity of projected rates with respect to the last observed values of κ is best il-
lustrated by considering the different central projections obtained when a small number of
observations is removed from the sample. In Figure 11 we show the central projections obtained
from the complete sample y = 1971, . . . , 2013 and the central projections obtained when one,
two or three years are removed from the end of the sample, that is κy is observed for y from 1971
to 2012 (one year removed), 2011 (two years removed) or 2010 (three years removed). While the
central projections obtained from subsamples do not change much if an ARIMA(1,1,0) model is
considered, the changes of the central projections based on the ARIMA(1,1,2) are significant.

Figure 11: Sensitivity of central projections when up to three years are removed from
the end of the sample. Left panel: ARIMA(1,1,2) model. Right panel: ARIMA(1,1,0)
model.
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We conclude that the inclusion of the two moving-average parameters improved the fit of the
model as measured by the AICc, but the robustness of mortality rate projections suffers. The
choice of an appropriate time series model for κ is therefore a problem which requires actuarial
judgement and should be based on well defined objectives. If models are chosen with robustness
of projections as a selection constraint then the best fitting ARIMA(1,1,2) model should not be
chosen. However, if only short term projections are required then the ARIMA(1,1,2) seems to be
the most appropriate of all time series models that we have considered, but one should be aware
that the improvement rate of projected mortality rates will be different from the estimated µ in
the short to medium term for that model.
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10 Conclusions
In this paper we showed how an ARIMA model can be a more realistic representation than
a random walk with drift for the index of mortality. We found that in both cases the overall
risk can be decomposed into parameter uncertainty and volatility. In an ARIMA process for
mortality forecasting, we found that selecting a model on the basis of fit can lead to projections
where the uncertainty over the ARMA parameters is too material to ignore. Furthermore, the
uncertainty over the ARMA parameters can lead to additional capital requirements for insurers
under a value-at-risk assessment mandated by Solvency II. For other, non-optimally fitting
ARIMA models the uncertainty from the ARMA parameters was negligible, and the impact on
insurer capital requirements was small.

Acknowledgments
Torsten Kleinow acknowledges financial support from Netspar under project LMVP 2012.03.

References
Akaike, H. (1987). Factor analysis and AIC. Psychometrica 52, 317–333.

Börger, M. (2010). Deterministic shock vs. stochastic value-at-risk: An analysis of the Solvency
II standard model approach to longevity risk. Blätter DGVFM 31, 225–259.

Brockwell, P. J. and R. A. Davis (1987). Time Series: Theory and Methods. Springer Verlag.

Brouhns, N., M. Denuit, and J. K. Vermunt (2002). A Poisson log-bilinear approach to the
construction of projected lifetables. Insurance: Mathematics and Economics 31(3), 373–393.

Cairns, A., D. Blake, K. Dowd, and A. Kessler (2015). Phantoms never die: Living with
unreliable mortality data. Journal of the Royal Statistical Society, Series A.

Cairns, A. J. G., D. Blake, K. Dowd, G. D. Coughlan, D. Epstein, A. Ong, and I. Balevich
(2009). A quantitative comparison of stochastic mortality models using data from England
and Wales and the United States. North American Actuarial Journal 13(1), 1–35.

Continuous Mortality Investigation (2009). User Guide for The CMI Mortality Projections
Model: ‘CMI 2009’. Continuous Mortality Investigation.

Currie, I. D. (2013). Smoothing constrained generalized linear models with an application to
the Lee-Carter model. Statistical Modelling 13(1), 69–93.

Delwarde, A., M. Denuit, and P. H. C. Eilers (2007). Smoothing the Lee-Carter and Poisson
log-bilinear models for mortality forecasting: a penalized likelihood approach. Statistical
Modelling 7, 29–48.

Girosi, F. and G. King (2008). Demographic Forecasting. Princeton University Press.

Granger, C. W. J. and P. Newbold (1977). Forecasting Economic Time Series. Academic Press.

Harvey, A. C. (1981). Time Series Models. Philip Allan Publishers Limited.

Hurvich, C. M. and C.-L. Tsai (1989). Regression and time series model selection in small
samples. Biometrika 76, 297–307.

22



Lee, R. D. and L. Carter (1992). Modeling and forecasting US mortality. Journal of the American
Statistical Association 87, 659–671.

Pascual, L., J. Romo, and E. Ruiz (2004). Bootstrap predictive inference for arima processes.
Journal of Time Series Analysis 25 (4), 449–465.

Plat, R. (2011). One-year value-at-risk for longevity and mortality. Insurance: Mathematics
and Economics 49(3), 462–470.

R Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Richards, S. J. and I. D. Currie (2009). Longevity risk and annuity pricing with the Lee-Carter
model. British Actuarial Journal 15(II) No. 65, 317–365 (with discussion).

Richards, S. J., I. D. Currie, and G. P. Ritchie (2014). A value-at-risk framework for longevity
trend risk. British Actuarial Journal 19 (1), 116–167.

Sampson, M. (1991). The effect of parameter uncertainty on forecast variances and confidence
intervals for unit root and trend stationary time-series models. Journal of Applied Economet-
rics 6 (1), 67–76.

Shiryayev, A. N. (1984). Probability. Springer Verlag.

van Berkum, F., K. Antonio, and M. Vellekoop (2014). The impact of multiple structural
changes on mortality predictions. Scandinavian Actuarial Journal 2014, 1–23.

Willets, R. C. (1999). Mortality in the next millennium. Staple Inn Actuarial Society, London.

23



Appendices

A Decomposition of forecast uncertainty for a ran-

dom walk
We decompose the mean squared prediction error of the random walk in Section 3:

E
[(
κ̂t(h)− κt+h

)2]
= E

[(
κ̂t(h)− κt(h) + κt(h)− κt+h

)2]
= E

[(
κ̂t(h)− κt(h)

)2]
+ E

[(
κt(h)− κt+h

)2]
+2E [κ̂t(h)− κt(h)] E [κt(h)− κt+h]

= E
[(
κ̂t(h)− κt(h)

)2]
+ E

[(
κt(h)− κt+h

)2]
+2E [κ̂t(h)− κt(h)] E

− h∑
j=1

εt+j


= E

[(
κ̂t(h)− κt(h)

)2]︸ ︷︷ ︸
parameter uncertainty

+ E
[(
κt(h)− κt+h

)2]︸ ︷︷ ︸
volatility

(18)

where we use the conditional independence of κ̂t(h) and κt+h given κt. The conditional inde-
pendence follows from the fact that κ̂t(h) is a function of the error terms {ε1, . . . , εt} while κt+h
depends on {εt+1, . . . , εt+h}. A similar argument can be made for ARMA and ARIMA processes
in Appendix C, assuming that µ̂ only depends on past values of εt.

Equation (18) decomposes the forecast uncertainty into components for parameter uncer-
tainty and stochastic volatility. Since the estimator for µ̂0 in equation (5) is unbiased, we use
equation (6) to get the following for the parameter uncertainty in equation (18):

E [κ̂t(h)] = κt + hE [µ̂0] = κt(h) (19)

Using equation (6) again, the component of the mean squared prediction error of the random-
walk forecast which is due to parameter uncertainty is therefore:

E
[(
κ̂t(h)− κt(h)

)2]
= Var(κ̂t(h))

= h2Var(µ̂0)

= h2
σ2ε
t− 1

=
h

t− 1
hσ2ε (20)

where the result for Var(µ̂0) is given in equation (7). The standard error of trend forecast is
therefore linear in h, the projection horizon. We can similarly derive an expression for the
component of the mean squared prediction error due to volatility in equation (18):

E
[(
κt(h)− κt+h

)2]
= E

( h∑
j=1

εt+j
)2 = hσ2ε (21)
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where we note that the standard deviation of the volatility component is proportional to
√
h.

Comparing equations (20) and (21) we see the following relationship:

Parameter uncertainty (variance) =
h

t− 1
Volatility uncertainty (variance)

As noted in Section 2, this ignores model risk and the fact that κ is estimated, not directly
observed.

B The variance of µ̂ in an ARMA(p, q) process
Derivation of the variance of µ̂ for a stationary ARMA(p, q) process as defined in (10) and (11)
where we denote by γ(i− j) = Cov (Xi, Xj) the auto-covariance function of X (or X0):

Var (µ̂) = Cov

1

t

t∑
i=1

Xi,
1

t

t∑
j=1

Xj


=

1

t

t∑
i=1

Cov

Xi,
1

t

t∑
j=1

Xj


=

1

t2

t∑
i=1

t∑
j=1

Cov (Xi, Xj)

=
1

t2

t∑
i=1

t∑
j=1

γ(i− j)

=
1

t2

t−1∑
k=−(t−1)

(t− |k|)γ(k)

=
1

t

 t−1∑
k=−(t−1)

γ(k)− 2
t−1∑
k=1

k

t
γ(k)


=
γ(0)

t
+

2

t

[
t−1∑
k=1

γ(k)−
t−1∑
k=1

k

t
γ(k)

]

=
Var(X0)

t
+

2

t

t−1∑
k=1

γ(k)

[
1− k

t

]
(22)

If
∑∞

k=1 |γ(k)| <∞ then it follows from Kronecker’s lemma that
∑t−1

k=1
k
t γ(k)→ 0 for t→∞,

see for example, Shiryayev (1984) p. 365. Multiplying equation (22) by t and then letting t→∞
we obtain:

lim
t→∞

tVar (µ̂) = Var(X0) + 2
∞∑
k=1

γ(k). (23)
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C Decomposition of forecast uncertainty for ARMA

and ARIMA processes
Since we restrict ourselves to stationary ARMA(p,q) models we can use the equivalent infinite
moving-average representation of the process X0 in (10):

X0
t =

∞∑
j=0

αjεt−j (24)

with α0 = 1. An infinite moving-average representation can always be found for a station-
ary ARMA(p,q) process — see Granger and Newbold (1977, p25). Explicit formulae for the
coefficients αj can be found in Harvey (1981, p38).

As with the random-walk model, predicted values given κt and X0
t are obtained by setting

all εk = 0 in (24) for k > t:

X0
t (h) =

∞∑
j=0

αjεt+h−jIj≥h (25)

κt(h) = κt +
h∑
i=1

X0
t (i) + hµ (26)

Ignoring uncertainty about the ARMA parameters, we have the following:

κ̂t(h) = κt +

h∑
i=1

X0
t (i) + hµ̂ (27)

As we are restricting ourselves to stationary ARMA processes, we can use the infinite moving-
average representation of X0 to express the prediction error for κ:

κt+h − κ̂t(h) =
(
κt+h − κt(h)

)
+
(
κt(h)− κ̂t(h)

)
=

h∑
i=1

(
X0
t+i −X0

t (i)
)

+ h(µ− µ̂) (28)

= h(µ− µ̂) +

h∑
i=1

∞∑
j=0

αj

[
εt+i−j − εt+i−jIj≥i

]

= h(µ− µ̂) +

h∑
i=1

i−1∑
j=0

αjεt+i−j (29)

The second term in equation (29) only depends on εt+1, . . . , εt+h while the first term only
depends on ε1, . . . , εt. The two terms are therefore independent. We can use this to derive an
expression for the mean squared prediction error as follows:

E

[(
κt+h − κ̂t(h)

)2]
= h2E

[(
µ− µ̂

)2]
+ E

( h∑
i=1

i−1∑
j=0

αjεt+i−j

)2
= h2Var (µ̂) + E

( h∑
i=1

i−1∑
j=0

αjεt+i−j

)2 (30)
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since E[µ̂] = µ. We have an expression for the first term on the right-hand side of equation
(30) from the result in equation (22). For the second term in equation (30), we note that

E

 h∑
i=1

i−1∑
j=0

αjεt+i−j

 = 0 and so (setting k = i− j):

h∑
i=1

i−1∑
j=0

αjεt+i−j =
h∑
k=1

(
h−k∑
i=0

αi

)
εt+k (31)

and so:

Var

 h∑
i=1

i−1∑
j=0

αjεt+i−j

 = σ2ε

h∑
k=1

(
h−k∑
i=0

αi

)2

We can then further progress with equation (30) using the result in (22):

E

[(
κt+h − κ̂t(h)

)2]
= h2Var (µ̂) + σ2ε

h∑
k=1

(
h−k∑
i=0

αi

)2

= h2

(
Var(X0)

t
+

2

t

t−1∑
k=1

γ(k)

[
1− k

t

])
+ σ2ε

h∑
k=1

(
h−k∑
i=0

αi

)2

(32)

For large values of t, i.e. a long history, the mean squared prediction error can be approxi-
mated using equation (23):

E

[(
κt+h − κ̂t(h)

)2]
≈ h2

t

(
Var(X0) + 2

∞∑
k=1

γ(k)

)
+ σ2ε

h∑
k=1

(
h−k∑
i=0

αi

)2

(33)

Note that a random walk with drift is an ARIMA(0,1,0) process, i.e. X is a white noise
process with mean µ. This allows us to use equation (32) to obtain the following:

E

[(
κt+h − κ̂t(h)

)2]
=
h2

t
σ2ε + hσ2ε =

(
h

t
+ 1

)
hσ2ε (34)

since α0 = 1, αk = 0 and γ(k) = 0 for all k > 0. In each of the equations (32), (33) and (34),
the first term on the right-hand side corresponds to uncertainty about the drift, µ, while the
second term corresponds to uncertainty about future innovations ε (the volatility of the process
κ).

It should be noted that both terms in (32) depend on the ARMA parameters αi and the
variance σ2ε , which we have assumed to be known with certainty. As mentioned earlier, in an
empirical study those parameters will need to be replaced by appropriate estimates, which adds
further uncertainty. Moreover, if the parameters αi are considered to be uncertain we need an
extra term in equation (28) for the prediction error, namely:
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h∑
i=1

(
X0
t (i)− X̂0

t (i)
)

=
h∑
i=1

 ∞∑
j=0

αjεt+i−jIj≥i −
∞∑
j=0

α̂jεt+i−jIj≥i


=

h∑
i=1

∞∑
j=0

(αj − α̂j) εt+i−jIj≥i

=
h∑
i=1

∞∑
j=i

(αj − α̂j) εt+i−j

There are no finite-sample analytical expressions for the forecast density of X̂0
t (i). We there-

fore use the bootstrap procedure proposed by Pascual et al. (2004), albeit with a modification
to randomly select the initial sequence; this avoids bias in the estimation of σ2ε , as shown by
contrasting Figures 8 and 9.

D MLE for drift parameter
An alternative estimator for the drift parameter µ can be found from the likelihood function
of an ARMA model. We will only show this estimator for an AR(p) process with no moving-
average term. To simplify the derivation we assume that the first p values of X are fixed, or
that we ignore the contribution to the likelihood from those initial values — see Harvey (1981).
Using the definition of an ARMA(p,0) process in equations (10) and (11), and assuming normally
distributed error terms, we find the log-likelihood function of all parameters as in Harvey (1981):

l(Xt, Xt−1, . . . , X1; θ) = logL(Xt, Xt−1, . . . , X1; θ)

= C − σ2

2

t∑
i=p+1

(Xi − µ− ar1(Xi−1 − µ)− . . .− arp(Xi−p − µ))2

= C − σ2

2

t∑
i=p+1

(
−

p∑
k=0

ark(Xi−k − µ)

)2

= C − σ2

2

t∑
i=p+1

(
p∑

k=0

ark(Xi−k − µ)

)2

(35)

where ar0 = −1, and C is a constant that is independent of µ. Note that the constant C
would depend on µ if we were to assume that the first p values are drawn from the stationary
distribution of the process rather than being fixed. However, this will only have a small impact
on the estimated value of µ.

Maximising the likelihood function with respect to µ is therefore equivalent to finding the
least-squares estimator for µ, that is.

µ̂LS = argminµ

t∑
i=p+1

(
p∑

k=0

ark(Xi−k − µ)

)2

We find for the score function for µ from equation (35):
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U(µ) =
∂

∂µ
l(Xt, Xt−1, . . . , X1; θ)

= − ∂

∂µ

σ2

2

t∑
i=p+1

(
p∑

k=0

ark(Xi−k − µ)

)2

= −σ2
t∑

i=p+1

{(
p∑

k=0

ark(Xi−k − µ)

)
∂

∂µ

(
p∑

k=0

ark(Xi−k − µ)

)}

= −σ2
t∑

i=p+1

{(
p∑

k=0

ark(Xi−k − µ)

)(
−

p∑
k=0

ark

)}

= σ2

(
p∑

k=0

ark

)
t∑

i=p+1

(
p∑

k=0

arkXi−k − µ
p∑

k=0

ark

)

= σ2

(
p∑

k=0

ark

) p∑
k=0

ark

 t∑
i=p+1

Xi−k

− (t− p)µ
p∑

k=0

ark


It follows that we find µ̂MLE from solving:

0 =

 p∑
k=0

ark t∑
i=p+1

Xi−k

− (t− p)µ
p∑

k=0

ark


The solution to this equation is given by:

µ̂MLE =

∑p
k=0

[
ark

∑t
i=p+1Xi−k

]
(t− p)

∑p
k=0 ark

=

∑p
k=0

[
−ark

∑t
i=p+1Xi−k

]
(t− p)

∑p
k=0(−ark)

=

∑t
i=p+1Xi − ar1

∑t
i=p+1Xi−1 − . . .− arp

∑t
i=p+1Xi−p

(t− p)
(
1−

∑p
k=1 ark

)
=

∑t
i=p+1Xi − ar1

∑t−1
i=pXi − . . .− arp

∑t−p
i=1Xi

(t− p)
(
1−

∑p
k=1 ark

)
which we can also rewrite as:

µ̂MLE =

p∑
k=0

[
ark∑p
k=0 ark

∑t
i=p+1Xi−k

(t− p)

]
(36)

We therefore find that the MLE µ̂MLE is a weighted average over the mean values over shifted
t−p observations, where the weights are determined by the coefficients of the AR(p) process. We
also find that µ̂MLE is approximately equal to the mean µ̂. The approximation becomes obvious
when the means ( 1

t−p)
∑t

i=p+1Xi−k are replaced by the overall mean 1
t

∑t
i=1Xi in equation (36).

Note that the difference between the mean µ̂ and the MLE µ̂MLE is decreasing for p decreasing
and/or t increasing.

29



Contact

More information including case studies, latest features,

technical documentation and demonstration videos can

be found on our website at www.longevitas.co.uk

Conference House, 152 Morrison Street, 

The Exchange, Edinburgh, EH3 8EB

Telephone 0131 315 4470

Email info@longevitas.co.uk

L   NGEVITAS


	Introduction
	Data and example mortality index
	Modelling  as a random walk
	Modelling  as an ARMA or ARIMA process
	Fitting an ARIMA model for 
	Alternative ARIMA models for 
	Impact on value-at-risk-style capital requirements
	Comparison with CMI projections
	Discussion
	Conclusions
	Bibliography
	Appendices
	Decomposition of forecast uncertainty for a random walk
	The variance of  in an ARMA(p, q) process
	Decomposition of forecast uncertainty for ARMA and ARIMA processes
	MLE for drift parameter



