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Abstract

Mortality levels vary by benefit amount, and a common simplification is to group by non-
overlapping ranges of varying widths. However, this ignores the continuous nature of benefit
amounts and leads to discretisation error, i.e. heterogeneity within benefit ranges and step
jumps between adjacent ranges. Another drawback of discretisation is that fitted parameters
are not easily extrapolated to values outside the range of the experience data. To address these
shortcomings it is often better to model mortality continuously by benefit amount. In this paper
we present a method of modelling mortality levels with continuous financial covariates, such as
pension size. We split the task into (i) a transform to address the presence of extreme benefit
amounts in actuarial data sets, and (ii) a response function to model mortality. Using as few
as two parameters, the method avoids discretisation error and extrapolates to amounts outside
the range covered by the calibrating data set. We illustrate the method by applying it to seven
international data sets of pensioners and annuitants.

Keywords: discretisation, binning, concentration risk, excess kurtosis, Hermite splines.

1 Introduction
Actuaries are long used to mortality levels varying by benefit amount. Historical methods of analysis
involved weighting deaths and exposure calculations by benefit amount to account for this. Modern
actuarial work uses statistical models, and a common approach to benefit amount is to create an
ordinal factor based on non-overlapping ranges. However, such factors create artificial discontinuities
at range boundaries, while simplistically assuming homogeneity within a benefit range. These issues
can be collectively labelled discretisation error, although there will still be a role for discretisation in
some portfolios (such as where benefit amounts might be clustered and do not vary continuously).

More problematically for actuaries, the mortality of the holders of the largest benefits is typically of
paramount financial significance — a small sub-group of lives typically accounts for a disproportionate
share of liabilities, i.e. concentration risk (see Table 2). However, discretisation often means that
this critical sub-group is merged with others who might have different mortality characteristics.
The alternative is to create more ranges, but this leads to smaller sub-groups with greater relative
estimation error. Another drawback of discretised benefit amounts lies in extrapolating to values
outside the range in the experience data, such as might be desired when deriving a pricing basis.
To avoid both general discretisation error and these specific actuarial concerns, it is useful to model
mortality continuously by benefit amount.

In this paper we present a method of modelling mortality levels with continuous financial covari-
ates, such as pension size or sum assured. Using just two parameters estimated from the data, the
method addresses the problem of excess kurtosis of benefit amounts in actuarial data sets, avoids
discretisation error and extrapolates mortality effects for amounts outside the range covered by the
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calibrating data set. We illustrate the method by applying it to seven international data sets of
pensioners and annuitants.

The plan of the rest of this paper is as follows: Section 2 describes the data sets used, while
Section 3 provides a quick overview of how to apply Hermite splines to mortality modelling. Section 4
looks at the variation in mortality by pension amount; Section 5 considers aspects and limitations
of discretising a continuous covariate like pension size; Section 6 considers transform functions to
standardise benefit amounts and deal with excess kurtosis; Section 7 outlines the application of
Hermite splines to modelling mortality continuously by transformed benefit amount and gives the
results for seven portfolios; Section 8 compares the continuous and discretised approaches, while
Section 9 looks at the impact of pension on modelled mortality levels. Section 10 concludes.

2 Data
The data sets used in this paper consist of pensioner records from occupational pension schemes and
insurer annuity portfolios. Due to the financial interest in not paying pensions longer than necessary,
such portfolios usually maintain accurate records of when pensions commence and cease. Pension
schemes CAN BE specific to a particular employer, and so pensioners often share an occupational
background and in some cases are geographically concentrated. Due to regulations and tax-reporting
requirements, pension schemes often have detailed additional information besides date of birth, gen-
der and (especially) pension amount. Such portfolios are like longitudinal studies with continuous
recruitment: as people retire, new benefit records are set up. Upon the death of an annuitant or
former employee, a surviving spouse’s pension might also be set up. Table 1 gives an overview of
the portfolios (the labelling convention is from Richards et al. [2020], which used five of the same
portfolios).

Table 1: Overview of portfolio data. The exposure periods vary within 2000–2019, i.e. excluding
the period of the COVID-19 pandemic [The Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020]. To put all lives within a portfolio on a common value footing, pensions
paid to deaths and early exits are revalued to the end of the exposure period.

Age Reval’n
Country Label range Deaths rate Description

Canada CAN2 55–100 2,614 1.5% Single-employer defined-benefit occupational
pension plan.

Germany DE 60–105 30,480 1% Occupational pension scheme for a mixture of
public- and private-sector employers.

England ENG 60–105 19,435 2.5% Defined-benefit occupational pension scheme
for a single English local authority.

France FRA 55–99 28,391 0% Insurer portfolio of voluntary top-up pensions
for employees of higher-education institutions
around France.

Netherlands NLD 50–105 4,894 1% Single-employer occupational pension scheme in
the private sector.

USA USA2 55–100 17,194 0% Occupational pension plan in the US.
South Africa ZA 50–100 60,881 5.5% Multi-employer database of occupational pen-

sion funds.

An important aspect of individual records is the potential for duplicates, i.e. two or more pensions
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or annuities paid to the same person. For the ENG portfolio in Table 1 the records have been
deduplicated using the techniques described in Macdonald et al. [2018, Section 2.5]. Individual
records also enable detailed data-quality checks to be carried out — see Macdonald et al. [2018,
Sections 2.3, 2.4, 2.7 and 2.8]. To avoid the risk of age mis-statements distorting model fits — see
Newman [2018a] and Newman [2018b] — any pensioners appearing to exceed age 105 were excluded.
The use of individual data makes data-quality checking far easier than with grouped counts. For
example, the FRA data set had nearly 700 annuitants appearing to reach age 110; however, since
each shared the same date of birth, it was clear that these records were erroneous.

Table 2: Inequality of pension size and concen-
tration of risk for the portfolios in Table 1.

Gini Top decile Excess
Portfolio coefficient as % of total kurtosis

CAN2 33.2% 23.4% 46.07
DE 43.4% 26.7% 7.14
ENG 53.4% 37.4% 19.1
FRA 36.0% 25.5% 46.26
NLD 52.9% 37.0% 96.41
USA2 43.8% 25.5% -0.39
ZA 67.3% 51.9% 76.12

Pension schemes and annuity portfolios are un-
equal institutions, where pension amounts can vary
more than incomes do in the general population.
Table 2 shows the Gini coefficient for each portfolio
[Gini, 1921], where a coefficient of 0% would arise
from everyone having the same pension and a co-
efficient of 100% would arise from one person hav-
ing all the income. The ENG, NLD and ZA data
sets are particularly unequal with respect to pen-
sion amount. One consequence of this inequality is
concentration risk, as shown in the second column
of Table 2. We define the top decile of pensioners
by sorting all lives in order of pension size and ex-
amining the proportion of all pensions paid to the 10% of lives with the largest pensions. This
represents a small sub-group of lives in a given portfolio, but Table 2 shows that it is a sub-group
of outsized financial importance. A related feature of actuarial data sets is ocasional very large and
distorting benefit amounts, the presence of which can be measured by the excess kurtosis [Wetherill,
1982, equation (3.22)]. The final column of Table 2 demonstrates extreme excess kurtosis with re-
spect to pension size for five of the seven portfolios; for comparison, the excess kurtosis of the normal
distribution is zero.

3 A primer on Hermite splines for mortality models

Figure 1: Hermite basis splines for t ∈ [0, 1].
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h11(t) = t2(t− 1)

The application of Hermite splines to mod-
elling mortality by age was introduced by
Richards [2020], which we briefly recap
here. Hermite splines [Kreyszig, 1999] are a
basic of four cubic polynomial functions of
t ∈ [0, 1], as depicted in Figure 1. Ignoring
the spline function h11, we can use Hermite
splines for a model of the mortality hazard,
µx, as follows:

log µx = h00(t)α+ h10(t)m0 + h01(t)ω (1)

where t = (x− x0)/(x1 − x0), the h functions are shown in Figure 1 and α, m0 and ω are parameters
to be estimated. In this paper we set x0 = 50 and x1 = 105 to cover all the age ranges in Table 1;
this means that in equation (1) α and ω are log µ50 and log µ105, respectively.
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� = −
n∑

i=1

Hxi
(ti) +

n∑
i=1

di log µxi+ti (2)

Hx(t) =

∫ t

0

µx+rdr (3)

Figure 2: Crude mortality hazard and fitted
hazard using equation (1) for USA2.
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To fit a survival model to individual data we max-
imise the log-likelihood function in equation (2) [Mac-
donald et al., 2018, Section 5.3] for the mortality haz-
ard, µx, at age x. Each life i enters observation at age xi

and is observed for ti years. di is an indicator variable
taking the value 1 if life i is dies at age xi+ ti, or 0 oth-
erwise. Hx(t) is the integrated hazard function in equa-
tion (3). For example, for the USA2 data set we have
α̂ = −4.19378, ω̂ = −0.957487 and m̂0 = −7.03612.
The usefulness of Hermite splines in modelling mortal-
ity by age is shown in Figure 2. Details of how to per-
form the numerical integration necessary for Hx(t) are
given in Richards [2020, Appendix B], which also gives
formulae for (i) the first partial derivatives needed for
optimizing the log-likelihood and (ii) the second partial
derivatives for estimating the parameter covariances.

Equation (1) is a three-parameter model for mortal-
ity by age, which is extended to a five-parameter model
allowing for age and gender in equation (4):

log µxi
= h00(t)(α + αfemalezfemale

i ) + h10(t)m0 + h01(t)(ω + ωfemalezfemale
i ) (4)

where αfemale and ωfemale are the additions to log µ50 and log µ105 for females, respectively; zfemale
i is

an indicator variable taking the value 1 if life i is female and zero otherwise. In equation (4) α and
ω represent log µ50 and log µ105 for males, respectively.

An important point to note about equation (2) is that it is the log-likelihood for a survival model
with left-truncated data, which is standard for data encountered in actuarial work; see Macdonald
et al. [2018, Section 4.3]. This contrasts with survival models used in medical research, where left-
truncation is relatively uncommon and where likelihoods are usually for non-left-truncated data
[Collett, 2003, Chapter 6].

4 Mortality by pension amount

Y =

∑
x

dx

∑
x

Ec
xµx+1/2

−

∑
x

dxwx

∑
x

Ec
xµx+1/2wx

(5)

We illustrate the variation in mortality by pension
amount for the portfolios in Table 1. We do this in
two ways: (i) the traditional comparison against a ref-
erence table, and (ii) using a statistical model. We start
by adapting Macdonald et al. [2018, equations (8.1) and
(8.2)] to define a measure of the impact of pension size on mortality, Y , as in equation (5); summation
is over single years of age x, dx is the number of deaths aged x last birthday, Ec

x is the central rate
of exposure time between age x and x+ 1 and wx is total pension payable to lives aged x. µx is the
mortality hazard according to some reference basis, e.g. a published reference table (the choice of
which is largely unimportant). In equation (5) Y represents the standardised reduction of mortality
due to pension-size effects, where a positive value means that higher-income pensioners have lower
mortality.
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Table 3: Reduction in mortality,
Y , due to impact of pension size.

Portfolio Males Females

CAN2 4.5% 4.4%
DE 8.5% 1.7%
ENG 18.1% 7.7%
FRA 3.7% 2.7%
NLD 15.2% 10.0%
USA2 3.1% 3.2%
ZA 32.4% 22.7%

Table 3 shows the impact of pension size using the unadjusted
S2PA table from CMI Ltd [2014] for all the portfolios in Table 1.
It is clear that mortality weighted by pension size is consistently
lighter for every portfolio, and that some dramatic differences
exist. However, comparisons against a reference table provide
no indication of statistical significance, for which we need some
kind of statistical framework.

One statistical approach is to fit models for mortality by
age and gender, as per equation (4), then examine the deviance
residuals by pension band [Macdonald et al., 2018, Section 6.5].
For each portfolio we define twenty size-bands (vigintiles) such
that the number of lives in each is as similar as possible. Within each size-band we calculate the
expected number of deaths [Macdonald et al., 2018, equation (6.13)] and then use the actual number of
deaths to calculate a Poisson deviance residual [Macdonald et al., 2018, equation (6.14)]. A systematic
pattern in the deviance residuals is evidence of mortality variation by pension size; specifically, a
pattern of positive residuals for lower size-bands and negative residuals for higher size-bands indicates
reducing mortality with increasing pension income.

Figure 3: Deviance residuals [McCullagh and Nelder, 1989, page 39] by pension vigintile, with 1
representing the smallest pensions and 20 the largest. Each vigintile within a given portfolio contains
a similar number of lives, and the panels show the deviance residuals from a simple model allowing for
variation by age and gender[Macdonald et al., 2018, Section 6.5.1]. The residuals for each portfolio
suggest a link between increasing pension size and decreasing mortality.
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Figure 3 shows the deviance residuals from the various model fits after allowing for age and
gender. All the residual tests of normality of Macdonald et al. [2018, Section 6.6] fail at the 5% level,
although the portfolios vary considerably in the strength of association between pension size and
mortality. One reason for this lies in the different taxation systems and benefit practices among the
various countries [Richards et al., 2020, Section 7]. However, the implication of Figure 3 is clear —
pensioner mortality usually varies by pension size. Table 2 shows the financial importance of allowing
for this, and so such variation must be handled in any model for actuarial purposes.
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5 Discretisation: features and limitations

Figure 4: Histograms of ENG portfolio by (a) pension and
(b) pension size-band.
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Table 2 shows extreme excess kurtosis
for five of the seven portfolios. This
is also illustrated for the ENG portfo-
lio in Figure 4(a), where the presence
of pensions over 23 times the average
distorts the scale of the plot. These
large pensions are relatively rare, but
Table 2 shows that they have an out-
sized financial importance.

One approach to handling excess
kurtotis when analysing mortality by
pension size is to assign each pension
to a size-band. The continuous nature of pension size is discarded as we sort the lives in ascending
order of benefit size and select boundaries such that there are equal numbers of lives in each range
(or as close to equal as is possible). This is shown for the ENG portfolio in Figure 4(b), where the
binning process has curtailed the excess kurtosis; the excess kurtosis of the uniform distribution is
-1.2, compared to 19.1 for the raw pension amounts.

Figure 5: ENG portfolio by pension vigintile, with 1 representing the smallest pensions and 20 the
largest. Each vigintile contains a similar number of lives. Panel (a) shows the time lived in years
and panel (b) shows the number of deaths. Panel (c) shows the deviance residuals [Macdonald et al.,
2018, Section 6.5.1] from a simple model allowing for age and gender, demonstrating the link between
increasing pension size and decreasing mortality.
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Figure 5 shows some further aspects of this equal-counts binning. Although the numbers of lives
in each vigintile are similar, panel (a) shows that the first vigintile has much less exposure time than
the others; this is due to the commutation of very small pensions to save administrative expense.
Panel (b) shows that the first vigintile also has far fewer deaths than the other vigintiles for the same
reason. Panel (c) plots the deviance residuals [Macdonald et al., 2018, Section 6.5.1] by vigintile,
showing a general tendency for mortality to fall with increasing pension size, with particularly stark
drops in mortality level for the largest pensions.

One feature of such discretisation (or binning) is that it leads to widely different benefit ranges. For
example, dividing the ENG dataset into twenty near-equal bins produces 4,221 individuals with an-
nual pensions in £0–£289.09 p.a. at the smallest end (vigintile 1) but 4,208 individuals in £15,284.91–
£103,110.53 p.a at the highest end (vigintile 20). The latter vigintile is a problem from an actuarial
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perspective: the assumption is that everyone in the vigintile has the same mortality, and yet we could
reasonably suspect that someone with a pension of £100,000 p.a. might be of different socio-economic
status and mortality than someone with a pension of £16,000 p.a. A further actuarial issue would
be in using this approach to calibrate a pricing model for wealthier individuals still; even assuming
the estimated effect for vigintile 20 were correct for lives up to £100,000 p.a., would it necessarily
apply to an individual with a pension of £1 million p.a.? And, if not, how would one extrapolate a
suitable effect for a pricing basis?

Vigintiles 18 and 19 in Figure 5(c) pose a problem for actuaries — while their mortality effects
appear to be part of a smooth progression, there is clearly a large difference between the two vigintiles
on average. The boundary between vigintiles 18 and 19 is £11,115.13, so a hypothetical Pensioner A
with £11,100 p.a. would fall into the higher-mortality vigintile 18, while Pensioner B with £11,200
would fall into the lower-mortality vigintile 19. With just £100 p.a. difference we would reasonably
expect the mortality of these two pensioners to be near-identical, all other things being equal, and
yet the vagaries of discretisation leads to them being treated differently. This is discretisation error.

Figure 6: Deviance residuals of ENG port-
folio by pension centile (1 represents the
smallest pensions and 100 the largest).
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Figure 7: Deviance residuals of ENG port-
folio for pension centiles 86–100.
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The obvious solution to the boundary problem — in-
creasing the number of size-bands — is not in fact a viable
one. Figure 6 shows the deviance residuals for an age-
gender model when the ENG portfolio is subdivided into
a hundred size-bands. The underlying continuous nature
of the link between pension size and mortality is clear, but
the signal is noisier compared with Figure 5(c). If used in
a model, there would be higher standard errors for the es-
timates (to say nothing of the gross over-parmeterization
of a model with 99 discrete pension-size effects). Some
kind of smoothing would be required to counteract the
variance of the resulting estimates. One option might be
to use a suitable basis of splines with knot points at the
size-band edges. However, it seems perverse to discretise
a continuous variable only to have to add a smoothing
process to combat the noise thus introduced. Another
option would be to optimise the grouping of centiles into
a smaller number of ranges, but this would be compu-
tationally expensive due to the number of combinations,
nor would it solve the problem of step jumps in mortal-
ity at range boundaries, and nor would it extrapolate to
amounts outside the data set.

Figure 7 focuses on the deviance residuals for centiles
86–100 with vertical lines corresponding to the bound-
aries of vigintiles 18–20 in Figure 5. Although there is
random variation, it is clear that the vigintiles are not
homogeneous with respect to mortality. The centile resid-
uals in Figure 7 suggests that mortality rates are falling
continuously within each of vigintiles 18, 19 and 20. Under such circumstances, a statistical model
fitting an effect for each vigintile will get the mortality level correct by lives, but it will naturally
tend to under-state the mortality measured by amounts.

While discretisation of benefit amounts into non-overlapping ranges is useful for modelling, it
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has several issues: (i) discontinuities at range boundaries, (ii) the false assumption of homogeneity
within wide bands, especially for the largest pensions, and (iii) the challenge of extrapolation. These
problems could all be solved by modelling mortality continuously by benefit size. We therefore seek
a continuous approach that reduces excess kurtotis in a similar manner to the binning in Figure 5,
but without the discretisation error that accompanies it. Some candidate transform functions are
discussed in the next section.

6 Transforms for benefit amounts

We have two requirements of a continuous transform of benefit amount: (i) that it addresses the
excess kurtosis in the distribution of benefit amounts, and (ii) that it acts somewhat like the binning
in Figure 5 in evenly distributing lives. Figure 8 shows that variance-stabilising transforms [Bartlett,
1947] like the logarithm and square root work fairly well in reducing the skew shown in panel (a),
but the resulting distributions still have more excess kurtosis than we might like.

Figure 8: Histograms of ENG portfolio by pension size and various transforms thereof.

0 50,000 100,000
0

20,000

40,000

60,000

(a) Pension p.a.

F
re
q
u
en
cy

0 5 10
0

5,000

10,000

15,000

(b) log(1 + Pension)

0 100 200 300
0

10,000

20,000

(c)
√
Pension

Logistic : seλ0/(1 + seλ0) (6)

Exponential : 1− exp(−seλ0) (7)

Inverse tangent :
2

π
tan−1(seλ0) (8)

Gaussian : 2Φ
(
seλ0

)
− 1 (9)

Inverse exponential : 2
(
1 + exp

(
−seλ0

))−1 − 1 (10)

Figure 9: Transform functions with λ0 = −10.
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Instead, we consider a transform func-
tion, τ(s), that maps the benefit amount,
s ≥ 0, onto the interval [0, 1). The trans-
form function must preserve the relation-
ship between benefit amounts, i.e. if s0 < s1
then τ(s0) < τ(s1). A practical point for
pensions and annuities is that τ(0) should
exist, as there are often some records in ex-
perience data with zero benefit amounts.
The cumulative distribution function of any
non-negative random variable would satisfy
these requirements. Equations (6)–(10) list
the transform functions used in this paper,
where λ0 ∈ R is a parameter that controls
the distribution of the transformed amounts
and Φ(x) is the N(0,1) cumulative distri-
bution function. Equations (6)–(10) are il-
lustrated in Figure 9 for λ0 = −10. The
transforms reduce the excess kurtosis of the
pension amounts: s ∈ [0, 25, 000) maps rel-
atively evenly onto the lower half of [0, 1),
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while s > 25, 000 maps onto the upper half of [0, 1). The value of 25,000 was chosen by eye from
inspection of Figure 9, and is dependent on the value of λ0. Useful values of λ0 will be determined
by the monetary scale of the pensions, i.e. the pension levels and the currency unit.

Table 4: Relationship between equations (6)–(9) and link
functions for binomial GLMs [Aitken et al., 1989, p.169].

Transform Related link function

Logistic Logit [Berkson, 1944]
Exponential Complementary log-log [Fisher, 1922]
Inverse tangent Cauchy [Morgan and Smith, 1992]
Gaussian Probit [Bliss, 1934]

Equations (6)–(9) were adapted from
the inverse link functions for a binomial
GLM, as shown in Table 4. The two
are not identical, however, as the trans-
forms only map half of the real inter-
val: equations (6)–(9) map s ≥ 0 onto
[0, 1), whereas the inverse link function
for a GLM maps η ∈ R onto [0, 1). The
transform in equation (10) was addition-
ally chosen because it is based on the the distribution function for the logistic distribution, which
has greater kurtosis than the normal distribution.

In practice λ0 in equations (6)–(10) will be estimated from the data, and so will vary between
portfolios depending on the kurtosis of benefit amounts. Figure 10 shows examples applied to the
pension amounts in the ENG portfolio.

Figure 10: Histograms of ENG portfolio by transformed pension size, τ(s), using equations (6)–(10).
In contrast to Figure 8, these parameterised transforms spread the benefit amounts relatively evenly
over [0, 1).
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The histograms in Figure 10 are not perfectly uniform, and we might need different transforms
(possibly with a second transform parameter) to achieve greater uniformity. However, perfect unifor-
mity is not a goal of itself and indeed a deliberate lack of it could be an advantage — in the example
of vigintile 20 in Section 5, there was a question mark over the homogeneity of a group with such a
wide pension range. There may therefore be improvements in fit from selecting a value of λ0 that
distributes amounts non-uniformly, as in Figure 11(a) and (c). As we will see, it can be advantageous
to use an estimation procedure to find the value of λ̂0 that optimises the fit with respect to mortality,
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rather than produce uniformity over [0, 1). It can also be useful to permit different values of λ0

for different categories, such as males v. females or retirees v. surviving spouses. The continuous
allowance for mortality by transformed amount is the subject of the next section.

Figure 11: Histograms of ENG portfolio by pension size using the exponential transform in equa-
tion (7) with varying values of λ0. A non-uniform distribution, such as in panel (c), may actually
be beneficial in terms of distributing lives according to their mortality characteristics (the value
λ0 = −9.764 comes from the model fit in Table 6).
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7 Continuous modelling of mortality by benefit amount

We assume that we have selected a transform function, τ(s, λ0), from equations (6)–(10). For a given
benefit amount, s, we calculate a transformed value u = τ(s, λ0). We then use this to calculate a
mortality effect, αamount(u), that can be added to log µx to raise or lower risk depending on benefit
size. To do so continuously we need a response function operating on u. Since u ∈ [0, 1) we can use
the same basis of Hermite splines in Figure 1 to flexibly model mortality patterns by transformed
benefit size.

Without loss of generality we take a benefit size of zero to be the baseline, which means we do
not need the Hermite basis spline h00. Our continuous mortality response, αamount(u), is therefore:

αamount(u) = ωamounth01(u) +mamount
0 h10(u) +mamount

1 h11(u) (11)

where ωamount is the ultimate effect of an infinite benefit amount (AmountUltimate), mamount
1 is the

gradient of the mortality effect approaching ωamount (AmountGradientUltimate) and mamount
0 is the

initial direction of the mortality effect from a zero benefit amount (AmountGradientInitial). Figure 12
shows some of the possible response shapes using equation (11).

Figure 12: Influence of (mamount
0 ,mamount

1 ) on the shape of αamount in equation (11) with ωamount = −1.
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The full flexibility shown in Figure 12 is not always required. Indeed, for some portfolios it may
suffice to replace equation (11) with a straight line, i.e. αamount = ωamountu, and allow the value of
λ0 to adapt the transform so that benefit amounts are distributed such that the linear assumption
holds. In many cases mamount

0 and mamount
1 can be dropped and it will suffice to just estimate λ0 and

ωamount, as in the models in this paper. In such cases λ0 will be optimised so that the mortality of
the transformed pension amounts follows the h01(u) spline, and so the estimates λ̂0 and ω̂amount will
be highly correlated.

log µ∗
x = log µx + αamount(u)h00(t) (12)

Our mortality model for age, gender and pension size
is then given in equation (12), with log µx defined in equa-
tion (4), t = (x − x0)/(x1 − x0) and αamount(u) defined in
equation (11). The multiplication of αamount(u) by h00(t) allows the effect of pension size to auto-
matically reduce with increasing age; see Richards [2020, Section 5]. We can then refit the mortality
models using equation (2) to estimate not just the parameters that allow for age and gender, but
also estimate the values of λ0 and ωamount that best reflect mortality by pension size.

Table 5 shows the stepwise improvements in fit from adding first gender and then a continuous
pension-size effect. In all cases the addition of pension size improves the fit measured by the AIC
[Akaike, 1987]. This is the case even for CAN2, which had the weakest association between pension
size and mortality in the deviance residuals in Figure 3. Of particular interest is the NLD portfolio,
where pension size explains more of the mortality variation than gender does.

Table 5: Stepwise development of AIC from including gender as categorical factor and pension size
as continuous variable. For simplicity the pension-size effect only uses λ0 and ωamount, i.e. mamount

0 =
mamount

1 = 0. The pension transform function, τ(s, λ0), is the inverse tangent in equation (8). Final
AICs might not match due to rounding.

Model log µx CAN2 DE ENG FRA NLD USA2 ZA

Age only eq. (1) 20,667 240,900 151,257 264,900 36,701 125,439 448,237
+ gender eq. (4) -111 -1,893 -993 -1,340 -123 -267 -2,339
+ pension size eq. (12) -32 -115 -302 -124 -137 -38 -1,737

Age+gender+pension size 20,524 238,892 149,962 263,436 36,441 125,134 444,161

Table 6: Results of various transforms when mod-
elling pension-varying mortality of ENG data set.

Transform AIC λ̂0 ω̂amount

Logistic 149,965 -10.170 -2.840
Exponential 149,963 -10.050 -1.881
Inverse tangent 149,962 -9.764 -2.050
Gaussian 149,962 -9.863 -1.515
Inverse exponential 149,962 -9.411 -1.578

One consideration is the impact of alter-
native transform functions from equations (6)-
(10). Table 6 shows that the choice of trans-
form function does not make a large difference
in fit for the ENG portfolio. However, from ex-
perimentation with other data sets (not shown)
the inverse tangent tends to provide a good all-
round fit within a reasonable number of itera-
tions.

The deviance residuals from the models in
Table 5 are shown in Figure 13, which can be directly compared with Figure 3. The patterns by
pension size-band are substantially reduced in all portfolios, showing that in most cases the mortality
variation by pension amount has been allowed for. The exception is the ZA portfolio, where many
of the residuals are still too large to be consistent with random variation.
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Figure 13: Deviance residuals by pension vigintile from models in Table 5 allowing for age and gender
and continuous pension size in Table 5.
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Figure 14: Deviance residuals of ENG portfolio
for pension centiles 86–100 using model for age,
gender and pension size.

90 95 100

−2

0

2

Pension centile

D
ev
ia
n
ce

re
si
d
u
al

Figure 14 shows the centile residuals 86–100
for the ENG portfolio in Figure 13 in more de-
tail. As can be seen by comparison with Figure 7,
the continuous amounts model has made a smooth
allowance for these all-important large pensions
without step jumps and without material bias at
any point (although there appears to be a slight
negative bias overall, it is just consistent with ran-
dom variation). It is reasonable to assume that
the model could then sensibly extrapolate mor-
tality effects for larger pensions than the maxi-
mum observed, thus making the model a suitable
starting point for a pricing basis. Finally, Table 7
shows that the Hermite-spline response function
is generally a better fit than a simple linear one.

Table 7: Comparison of AICs using linear and Hermite-spline response functions with inverse tangent
transform.

Response Form of
function αamount(u) CAN2 DE ENG FRA NLD USA2 ZA

Linear ωamountu 20,532.8 238,923 149,944 263,568 36,464.7 125,129 444,261
Hermite spline ωamounth01(u) 20,524.5 238,892 149,938 263,567 36,453.8 125,129 444,224

Advantage for Hermite spline 8.3 31 6 1 10.9 0 37
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8 Comparison of discretised and continuous approaches

Table 8: Results of different approaches to pension-varying mortality
of ENG data set (age and gender effects are also allowed for). Factor
levels contain equal numbers of lives. The continuous model uses an
inverse tangent transform and the Hermite-spline response function.

Approach Factor Lives in Information criterion:
to pension levels each level (a) AIC (b) BIC

Factor 2 42,193 150,179 150,235
3 28,128 150,129 150,195
4 21,094 150,085 150,160
5 16,876 150,042 150,126
10 8,437 149,973 150,104
20 4,208 149,972 150,197

Continuous n/a n/a 149,962 150,028

Table 8 shows the model
fits using two different ap-
proaches to modelling mor-
tality by pension size. The
first six rows of Table 8 show
the AIC and BIC [Schwarz,
1978] from splitting the
population into equal-sized
groups by pension size, while
the last row shows the infor-
mation criteria for the sim-
plest model for the continu-
ous approach. The continu-
ous model is the best-fitting
according to both the AIC
and BIC.

Table 9: Results of optimising breakpoints so
that factor levels contain unequal numbers of
lives. Applied to ENG data set with age and
gender also allowed for in the model.

Factor Lives in Information criterion:
levels top level (a) AIC (b) BIC

2 12,648 150,019 150,075
3 12,648 149,994 150,059
4 12,648 149,997 150,072
5 12,648 149,986 150,071
6 4,208 149,962 150,056
7 4,208 149,962 150,065
8 4,208 149,962 150,074
9 4,208 149,963 150,085
10 8,440 149,975 150,105

An alternative approach is to optimise the range
breakpoints by starting with 20 bands of equal num-
bers of lives and merging adjacent bands with similar
mortality. We do this by searching for merges that
produce the lowest AIC for a given target number of
levels (targeting the BIC would produce the same re-
sult, as the number of parameters is held constant).
The process is iterative and the time taken to consider
all possible merges increases with both the target num-
ber of levels and the initial number of size-bands. For
this reason, we adopt a more limited searching algo-
rithm for targeting four or more factor levels. In our
implementation we have further reduced run-times by
using parallel processing to spread calculations over 63
threads [Butenhof, 1997]. The results of this optimi-
sation process are shown in Table 9. We can see that,
for a given number of factor levels, the model fit is
materially improved compared with the same number of levels in the equally-sized bands of Table 8.
The best-fitting optimised factor in Table 9 has six levels, and it is the equal of the continuous model
in Table 8 in terms of the AIC (but not the BIC). However, we still have discretisation error, and the
granularity is limited by the number of initial bands. A further refinement for reducing discretisation
error might be to optimise from (say) 100 initial discretised size-bands instead of 20, although this
would substantially increase the run-time in searching for the optimal breakpoints.

13



15

9 Impact of pension size on modelled mortality
Table 10 shows the parameter estimates for the model fitted to the ENG data set with allowance for
age effects, gender differentials and a continuous pension-size effect. The model is very parsimonious,
containing just seven parameters.

Table 10: Mortality model fitted to ENG portfolio allowing for variation by age, gender and contin-
uous pension-size (inverse tangent transform and Hermite-spline response function). *** denotes a
p-value of 0.1% or lower.

Standard
Parameter name Type Estimate error Z-value Sig. Lives Deaths

AgeGradientYoungest m0 -4.306 0.5497 -7.83 *** 84,389 19,435
AmountTransformParameter λ0 -9.764 0.1279 -76.37 *** 84,389 19,435
AmountUltimate ωamount -2.050 0.2831 -7.24 *** 84,389 19,435
Gender.F αfemale -0.977 0.0415 -23.53 *** 51,064 10,690
Gender.F:Oldest ω -0.156 0.0327 -4.76 *** 51,064 10,690
Intercept α -3.904 0.1088 -35.90 *** 84,389 19,435
Oldest ω -0.772 0.0335 -23.09 *** 84,389 19,435

Figure 15: Ratio of mortality rates by pension
size relative to those with £5,000 p.a. according
to model in Table 10.
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Figure 15 shows the modelled mortality rates
by pension size for the ENG portfolio, expressed
as a proportion of the mortality rates for lives re-
ceiving £5,000 p.a. The convergence of mortality
rates with increasing age is a deliberate design fea-
ture of the Hermite-spline approach to mortality
modelling [Richards, 2020, Section 5].

Figure 15 shows that large reductions in mor-
tality happen with modest absolute increases in
annual pension: doubling a £5,000 p.a. pension
reduces mortality at age 60 by a quarter, while
doubling again to £20,000 p.a. reduces mortal-
ity rates to 40% of the original level. However,
there is a diminishing return: doubling again to
£40,000 p.a. and £80,000 p.a. produces ever-
smaller reductions. Doubling from £80,000 p.a.
to £160,000 p.a. results in only a tiny reduction.
A cash increase of £X at £5,000 p.a. produces a
much larger proportional change in mortality-relevant life circumstances than it can at much larger
incomes; this is probably because, at small income levels, the extra is spent on basic needs.

One confounding element in Figure 15 is the role of time: the model used does not allow for
time trends, although these can be added [Richards, 2020, Section 7]. Nor does the model allow for
year-of-birth (cohort) effects [Willets, 1999], which are important because smaller pensions will tend
to be received by those in earlier cohorts who retired long ago. This may lead to exaggeration of the
impact of pension size on mortality in Figure 15.

Similarly, there is greater diversity amongst small and medium-sized pensions than there is for
larger pensions: while a very large pension is an unambiguous signal of an individual with high
income, small and mid-sized pensions are often only weak indicators of overall retirement income.
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To see why, consider two pensioners of the same age and gender with a pension of £10,000 p.a. —
for the first pensioner this may be their whole retirement income after an entire working life on a
modest salary, whereas for the second the pension may be the result of short period of service with
a high salary. In such circumstances, the effect of pension size on mortality in Figure 15 might be
under-stated. To improve a model for small and mid-sized pensions, one might add a geodemographic
factor based on postcode (UK, Richards [2008]), postal code (Canada and the Netherlands) or nine-
digit ZIP code (USA). Other territories can achieve similar geodemographic profiling using the whole
address. Adding such factors to the model would change the impact of pension size on mortality in
Figure 15.

Table 11: Period life expectancies
implied by the model in Table 10.

Life expectancy
Pension at age 60:
(£ p.a.) Males Females

5,000 20.50 25.01
10,000 22.04 26.18
20,000 24.42 27.96
40,000 26.13 29.25
80,000 26.81 29.75
160,000 27.01 29.91

Bearing in mind the limitations of a mortality model with
just three risk factors, Table 11 shows the impact of pension size
on period life expectancy, showing a wide spread from low to
high incomes and a reducing male-female differential as income
increases.

Another benefit of the continuous approach lies in the abil-
ity to fit interactions. For example, we could vary the effect of
pension size by gender (not shown). With the most basic two-
parameter form of the continuous model we could also test the
addition of separate parameters for λ0 and ωamounts for males and
females. To do this with a six-level ordinal factor would require
adding five parameters, instead of just two for the continous ap-
proach. The parsimony of the continuous approach allows far
simpler models compared to discretised factors, especially if interactions with other variables are
required.

10 Conclusions

We can model mortality continuously by benefit amount using a combination of (i) a simple transform
and (ii) a Hermite-spline response function. The transform addresses the high excess kurtosis of
benefit amounts in actuarial data, while the response function models the mortality level continuously
across the transformed amounts. At its simplest, there are just two parameters that need to be
estimated from the data, although a further two optional parameters exist for more complex patterns
of mortality. In addition to fitting the existing experience data, the combination of transform and
Hermite-spline response function permits extrapolation of results to benefit amounts outside the
range covered by the calibrating data set. This makes the method useful for creating pricing models
for very large benefit amounts.
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Appendices

A Parameters

There are two kinds of parameters to be set for a Hermite model of mortality by age: (i) configuration
parameters, whose values are decided in advance by the analyst, and (ii) parameters whose values
are estimated from the data.

A.1 Parameters set by the analyst

Table 12 sets out the configuration parameters that are set in advance by the analyst, i.e. they are
not estimated from the data. The values used in the main body of the paper are given.

Table 12: Configuration parameters for the Hermite model family.

Parameter Value Description and role

x0 50 Age below which log µx is deemed constant in age; see equation (1).
x1 105 Age above which log µx is deemed constant in age.

In addition to these values, the analyst must also decide which transform function to use; see
Figure 9.

A.2 Parameters estimated from the data

Table 13 sets out the parameters whose values are estimated from the data, i.e. by maximising the
log-likelihood function in equation (2).

Table 13: Overview of parameters.

Parameter Name Description and role of parameter

α Intercept log(mortality) for lives aged x ≤ x0; see equa-
tion (4).

ω Oldest log(mortality) for lives aged x ≥ x1.
αfemale Gender.F Addition to log(mortality) for females aged x ≤ x0;

see equation (4).
ωfemale Oldest:Gender.F Addition to log(mortality) for females aged x ≥ x1.
m0 AgeGradientYoungest Gradient of log(mortality) leaving age x0; see equa-

tion (1).
mamount

0 AmountGradientInitial Initial direction of log(mortality) for lives with zero
benefit amounts; see equation (12).

mamount
1 AmountGradientUltimate Gradient of log(mortality) approaching maximum

benefit effect, ωamount; see equation (12).
λ0 AmountTransformParameter Parameter used in mapping benefit amount onto

[0, 1); see Figure 9.
ωamount AmountUltimate Ultimate effect of infinite benefit amount on

log(mortality) relative to those with zero amounts;
see equation (12).
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