
A stochastic implementation of

the APCI model 
for mortality
projections

By S. J. Richards, I. D. Currie,
T. Kleinow and G. P. Ritchie

L   NGEVITAS

Cover_Longevitas Law Cover  19/05/2017  10:54  Page 1

MORTALITY 
SHOCKS & 
REPORTING 
DELAYS 
IN PORTFOLIO DATA

TM

By S. J. Richards





1

Mortality shocks and reporting delays in portfolio data

Richards, Stephen J.∗

February 8, 2021

Abstract

The covid-19 pandemic requires that actuaries track short-term mortality fluctuations in
the portfolios they manage. This demands methods that not only operate over much shorter
time periods than a year, but that also deal with reporting delays. In this paper we consider
both semi-parametric and fully parametric approaches for tracking portfolio mortality levels in
continuous time. We identify both seasonal patterns and mortality shocks, thus providing a
benchmark for covid-19 in terms of a portfolio’s own past experience. A model is presented
that allows for seasonal variation and reporting delays. We find that an estimate of mortality
reporting delays can be made from a single extract of experience data and used to forecast
unreported deaths. Results are given for annuity portfolios in France, the UK and the USA.

Keywords: covid-19, seasonal variation, OBNR, IBNR.

1 Introduction
The covid-19 pandemic [The Novel Coronavirus Pneumonia Emergency Response Epidemiology
Team, 2020] created the need to measure and track mortality shocks in portfolios managed by
actuaries. The intense nature of the covid-19 mortality shock in many countries means that tra-
ditional methods based around annual qx-style mortality rates are inadequate: mixing periods of
shock and non-shock mortality will under-state the true intensity of a mortality spike. Furthermore,
risk managers and decision-makers cannot wait until a full year’s experience becomes available, while
administration functions need to plan staffing levels from week to week for processing surges in death
notifications. Something akin to real-time mortality reporting is therefore needed, so continuous-time
methodologies are strongly preferred.

There are two related practical issues. First, the short-term nature of the covid-19 shock in
some territories carries the risk of confounding with normal seasonal variation; see Rau [2007] for a
comprehensive overview of human seasonal mortality and Richards et al. [2020] for the specifics of
seasonal mortality among pensioners and annuitants. Any assessment of the impact of covid-19 on
an insured portfolio must therefore take into account typical seasonal variation. Second, the most
up-to-date available data will be affected by unreported deaths, so any methodology must handle the
inherent delays in death reporting.

This paper presents semi-parametric and fully parametric approaches to tracking portfolio mor-
tality in continuous time, and considers their abilities to address these issues. We present a simple,
semi-parametric estimator that tracks portfolio mortality levels by operating on intervals defined by
the gaps between dates of death. This means daily estimation of portfolio mortality levels where the
data support it. We illustrate our approach by applying the estimator to annuitant portfolios in three
countries, revealing the timing and impact of the covid-19 shock and benchmarking it against past
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seasonal variation in those same portfolios. We further present a fully parametric model that allows
for delays in death reporting, and thus provides continuous forecasts of emerging portfolio mortality.

The plan of the rest of this paper is as follows: Section 2 describes the data sets used in the
paper, while Section 3 defines and illustrates a semi-parametric approach. Section 4 considers delays
in reporting and recording of deaths. Section 5 presents a parametric methodology for dealing with
such delays and Section 6 considers its effectiveness in terms of fit; Section 7 examines the ability of
the parametric OBNR (occurred-but-not-reported) term to forecast delayed mortality, and how to
use it to improve the semi-parametric estimator of Section 3; Section 8 concludes.

2 Data description
The data sets used in this paper comprise individual records from the insurer annuity portfolios
described in Table 1. Due to the financial interest in not paying longer than necessary, administrators
maintain accurate records of when annuities commence and when they cease. Such portfolios are like
longitudinal studies with continuous recruitment: new benefit records are set up as people retire, but
also when the death of the primary annuitant triggers an annuity to a surviving spouse.

Table 1: Overview of portfolios and data extracts available. The naming convention was chosen for consis-
tency with Richards et al. [2020], as some of the same portfolios are used.

Cumul. Covid-19 In-force
Date of total pandemic on 1 April

Portfolio Description extract deaths included 2020
FRA Insurer portfolio of voluntary top-up pen-

sions for employees of higher-education in-
stitutions around France.

June 2019
June 2020
Sept. 2020

42,284
45,373
47,026

No
Yes
Yes

n/a
251,528
251,330

UK3 Individual annuitants from defined-
contribution personal pensions, widely
spread around the UK.

June 2020
Sept. 2020

108,003
109,878

Yes
Yes

146,346
146,269

USA3 Annuitants from bulk buy-outs spread
around the USA.

Sept. 2020 145,153 Yes 723,762

Direct extracts were made from the administration systems for the FRA and UK3 portfolios, as
recommended by Macdonald et al. [2018, Section 2.2] to get the most up-to-date data. Extracts
were taken at different times, and the corresponding cumulative death counts are shown in Table 1.
The most recent extract will be used for estimating the impact of the covid-19 mortality shock in
Section 3, while earlier extracts for the same portfolio will be used for assessing delays in death
reporting and recording in Section 4.

Policy records were validated using the checks described in Macdonald et al. [2018, Sections 2.3
and 2.4]. Insurer annuity portfolios often contain two or more policies per person, and so a data-
preparation stage of deduplication is normally required for statistical modelling; see Macdonald et al.
[2018, Secton 2.5] for discussion of various approaches. The UK3 portfolio in particular contains
many such duplicates. However, the FRA portfolio did not contain enough detail in one of the
extracts to permit deduplication, so we will use the policy-level records without deduplication in this
paper. This means that our mortality data are over-dispersed [Djeundje and Currie, 2011] due to
some individuals receiving more than one annuity.
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Figure 1: Average age over time of in-force annuitants in Ta-
ble 1.
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Figure 1 shows that the average age
increased over the exposure period in
all three portfolios, indicating that the
numbers of new policies are not enough
to stop the portfolios ageing. The large
step increase in average age for UK3 is
due to the transfer out of a block of an-
nuities, while the smaller step decrease
in average age for FRA is due to 9,572
new annuities in December 2014. We
will therefore restrict our attention to
experience data on or after 1st January
2015 to avoid step changes in the age
composition of portfolios.

3 A semi-parametric approach
The mortality hazard, µx,y, is a function of age, x, and calendar time, y, plus other risk factors
such as gender, pension size and others [Richards et al., 2013]. Various non-parametric estimators
of mortality functions exist, but they typically only have one time-varying element (usually age).
For example, the Nelson-Aalen estimator [Nelson, 1958] of the integrated mortality hazard and the
Kaplan-Meier estimator of the survivor function [Kaplan and Meier, 1958] are usually defined with
respect to age, leaving unmodelled heterogeneity with respect to calendar time. In this section we
consider non-parametric estimators defined with respect to calendar time, leaving age and other
factors as unmodelled sources of heterogeneity. We note that such estimators will be in no sense
useful for estimating the mortality of a portfolio for actuarial purposes like pricing and reserving.
However, over short periods of time most portfolios do not change much in composition, and so such
estimators might reveal insights into short-term variation in mortality levels.

Adapting the notation of Macdonald et al. [2018, page 140], we consider a Nelson-Aalen estimator,
Λ̂y,t, of the cumulative hazard from calendar time y to y+t. We turn dates into real numbers by taking
the year and adding the number of days elapsed divided by the number of days in that year. For
example, 2020 is a leap year, so the date 2020-03-14 is represented as 2020.199454 (=2020 + 73/366).
We create a set {y + ti} of ny distinct times (dates) of death. We define dy+ti

as the number of deaths
occurring at time y + ti and define ly+t−

i
as the number of lives immediately before time y + ti.

Λ̂y,t =
∑
ti≤t

dy+ti

ly+t−
i

(1)
Our non-parametric estimator of the aggregate integrated hazard from

time y to y + t is shown in equation (1). An example of Λ̂y+t for the FRA
portfolio is shown in Figure 2(a). The number of comparisons required for
{ly+t−

i
} grows with the product of ny and the number of lives, so we use parallel processing over 63

threads to reduce calculation time [Butenhof, 1997].

µ̂y+t = 1
c

(
Λ̂y,t+c/2 − Λ̂y,t−c/2

)
(2)

We then use the Nelson-Aalen estimator in equation (1) to
create a semi-parametric estimator of the mortality hazard in
time, µ̂y+t, as per equation (2). This is a central difference
around Λ̂y,t with a bandwidth parameter of c > 0 years. The result is shown in Figure 2(b) for the
FRA portfolio. Equation (2) is essentially a uniform kernel estimator, and more sophisticated kernel
estimators are available; see Anderson et al. [1992, Section IV.2.1]. In this paper c is set subjectively.
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Figure 2: (a) Nelson-Aalen estimate Λ̂2010,t, (b) estimate µ̂2010+t with
c = 0.5. Mortality is revealed to be a highly time-dependent process,
with material swings based on the season. Source: own calculations for
FRA portfolio described in Table 1.
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Despite the major sources
of unmodelled heterogeneity,
the estimators in equations (1)
and (2) are useful for reveal-
ing short-term fluctuations of
mortality, as shown in Fig-
ure 2. Although Λ̂2010,t looks
plausibly linear, µ̂2010+t re-
veals the strong seasonality
observed in many pensioner
populations [Richards et al.,
2020]. The overall rising trend
in Figure 2(b) is due to the
increasing average age of the
FRA portfolio shown in Fig-
ure 1. The amplitude of sea-
sonal fluctuations increases with the increasing average age, a phenomenon measured in this and
other portfolios in Richards et al. [2020, Section 5].

Figure 3: µ̂y+t for FRA, UK3 and USA3 portfolios with c = 0.1 and 1st April 2020 marked with a dotted
vertical line. The vertical scales are different because of the younger average age of the FRA portfolio. y
varies by portfolio, but only values of y + t since 1st January 2015 are shown for comparability.
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Equation (2) works best where there are several reported deaths per day. This applies to all three
annuity portfolios here, but term-assurance portfolios would have to be larger due to the younger
average age. Although the UK3 portfolio is the smallest in terms of policy counts (Table 1), its higher
average age (see Figure 1) means there are more deaths per day than the much larger FRA portfolio.
More deaths per day means that a portfolio can support a smaller value of c to reveal greater detail,
as in Figure 3 where we can see the covid-19 mortality spike in April 2020 for the FRA, UK3 and
USA3 portfolios. The spike is lower for the FRA portfolio because of the lower average age, as the
mortality rate of those infected with SarsCov2 increases strongly with age; see CCAES [2020] and
Istat [2020]. Figure 3 also benchmarks the covid-19 spike against past seasonal variation: for the
FRA portfolio, the covid-19 spike is marginally higher than the winter period at the start of 2017,
whereas for the UK3 portfolio the covid-19 spike is at least a third higher than the 2017/2018 winter.
For the UK3 portfolio, the death rate peaked at 19.6 per 100,000 annuities in the second week of
January 2018, whereas it peaked at 26.8 in the first week of April 2020.
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Figure 4: µ̂2015+t with c = 0.1 separately for males and females in UK3
portfolio with 1st April 2020 marked with a dotted vertical line. The
vertical scales are different because males have a higher mortality rate
than females.
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Figure 4 shows µ̂2015+t sep-
arately for males and females
in the UK3 portfolio. The fe-
males in Figure 4(a) experi-
enced a covid-19 spike in April
2020 that is not much worse
than the spike in the winter of
2017/2018. In contrast, Fig-
ure 4(b) shows that males ex-
perienced far worse covid-19
mortality, with a peak death
rate of 29.8 per 100,000 in the
first week of April 2020 against
a prior peak death rate of 23.8
per 100,000 in the first week
of January 2018. The heavier
covid-19 mortality of males was also present in the data of CCAES [2020] and Istat [2020].

Equations (1) and (2) are useful for exploratory analysis, and graphs like Figure 3 are also useful
for communication with non-experts. One practical aspect of equation (1) is that only three data
items for each annuity are required for its computation: (i) the annuity commencement date, (ii)
the date of cessation of observation (death, early withdrawal or the extract date), and (iii) whether
the cessation is a death. This means that no personal data are required for the calculation of the
mortality hazard in equation (2). This is a useful feature when modern data-protection and privacy
laws restrict both the use and sharing of personally identifiable information (PII); indeed, the data
for USA3 could only be shared for this research precisely because they contained no PII. Data privacy
and further applications of the semi-parametric approach are discussed in Appendix A.

However, there are several drawbacks of equation (2). One is that µ̂y+t is not defined for the last
c/2 years of the experience data. For smaller portfolios requiring larger values of c (see Figure 15),
this reduces the usefulness of the semi-parametric estimator as a timely statement of recent mortality.
Furthermore, even where µ̂y+t is defined, the most recently calculated values are affected by unre-
ported deaths — the FRA and USA3 portfolios in Figure 3 show particularly pronounced drops in
reported mortality levels in mid-2020 caused by such delays. We therefore need a methodology that
can produce results that are both up-to-date and adjust for reporting delays. Before this, however,
we first explore the nature and extent of late-reported deaths in the FRA and UK3 portfolios, as
these portfolios have more than one data extract.

4 Reporting delays
Figures 3(a) and (c) show a dramatic fall in apparent mortality after the peak in April 2020, far below
the level of pre-pandemic mortality. This is due to delays in the reporting and recording of deaths,
i.e. occurred but not reported (OBNR) to use the terminology of Lawless [1994]. Such OBNR effects
make the estimator in equation (2) less useful for the period leading up to the extract date. This is
in addition to the loss of the c/2 years prior to the extract date due to the nature of equation (2).
This gives rise to a series of practical questions: (i) how extensive is the OBNR effect, (ii) how far
back does the OBNR effect matter, and (iii) can we adjust for OBNR to compensate?

We assume that a death takes a time v > 0 to be notified to the insurer. v is referred to as
secondary data, i.e. information about the death reporting rather than about the underlying life.
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Figure 5: Three deaths A, B and C occurring on the same date, u,
and how their notification relates to data extracts at times u1 and u2
(u < u1 < u2).
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For the FRA and UK3 datasets
we each have two separate ex-
tracts at times u1 and u2 in 2020.
Figure 5 shows the three differ-
ent ways in which a death at
time u < u1 can be related to
the two extracts. Type A deaths
both occur and are reported be-
fore u1. Without separate record-
ing of the notification date, such
deaths tell us only that v ∈
(0, u1 − u]. Type B deaths occur
before u1 but are still unreported
by u2. Such deaths are unknown
to us and so our delay data are right-truncated. Type C deaths occur before u1, are not reported by
u1 but are reported by u2; here the delay data are interval-censored [Collett, 2003, Chapter 9] and
all we can say about the reporting delay is that v ∈ (u1 − u, u2 − u].

Table 2: Summary of observed reporting delays between successive extracts.
FRA UK3

Assumed first extract date, u1 18 June 2020 18 June 2020
Assumed second extract date, u2 18 Sept. 2020 16 Sept. 2020
Type A deaths in 2020 before u1 1,171 2,045
Type C deaths notified in [u1, u2) 853 488
Ratio of Type C to Type A deaths 0.729 0.239
Type C deaths: median of (u1 − u) 54 days 39 days
Type C deaths: largest of (u1 − u) 15.95 years 24.48 years

We do not know the
exact date of each extract,
so we assume it is the
day after the last date of
death. This simplifying
assumption has a signifi-
cant impact on the AICs
in the likes of Tables 4 and
5, although it does not
change the conclusion that
the OBNR effect is statis-
tically significant. Table 2 shows summary details of the late-reported deaths observed between two
successive extracts of the FRA and UK3 portfolios.

Figure 6: Ogives of minimum Type C re-
porting delays in days. The horizontal axis
is restricted, as the presence of decade-long
delays otherwise distorts the plot.
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Table 2 shows that the FRA portfolio has a bigger
OBNR issue than the UK3 portfolio, as the ratio of Type C
deaths to Type A deaths in 2020 is much higher. We also
see that both portfolios have occasional delays lasting more
than a decade. Figure 6 shows the ogives of the minimum
reporting delays for Type C deaths, i.e. u1 − u. Although
Figure 6 makes it appear that the UK3 portfolio has a
worse reporting delay due to the lower cumulative propor-
tion, Table 2 shows that this is actually because the Type
C deaths for UK3 are the most seriously delayed cases.

To illustrate the impact of OBNR deaths, Table 3 shows
a week in June 2020 for the UK3 portfolio. As noted in
Dodd et al. [2015, p108], there are numerous effects of
OBNR deaths on the likes of equation (2). There are three
direct ways for missing deaths to have an impact: (i) there
are more distinct death times than the ny ones observed in
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a given extract, as demonstrated by the row for 16 June 2020, (ii) the dy+ti
death counts are higher,

and (iii) l−
y+ti

counts are lower due to other late-reported deaths for the period before 11 June 2020.
This effect stretches back months prior to the extract, as can be seen in the in-force policy counts
at 1 April 2020 in Table 1. Points (ii) and (iii) both act on equation (2) to progressively under-state
the mortality hazard closer to the extract date.

Table 3: Impact of late-reported deaths from comparing two extracts of
UK3 portfolio in Table 1. The later extract not only contains more deaths
due to reporting delays, but reduced in-force counts as well. In the June
2020 extract there were no deaths on 16 June and so no policy count was
calculated for that date.

June 2020 extract: Sept. 2020 extract:
In-force New In-force New

Date policies Deaths policies policies Deaths policies
2020-06-11 145,166 6 3 144,934 18 4
2020-06-12 145,163 3 8 144,920 16 14
2020-06-13 145,168 9 0 144,918 14 5
2020-06-14 145,159 1 4 144,909 7 4
2020-06-15 145,162 3 1 144,906 15 7
2020-06-16 n/a n/a 8 144,898 8 12
2020-06-17 145,168 3 1 144,902 29 8

For portfolios like UK3
there is an indirect fourth im-
pact on policy counts from
late-reported deaths: upon
the death of a primary an-
nuitant, a surviving spouse’s
annuity may be set up. In
addition to past death counts
increasing due to reporting
delays, policy counts may
also increase if a back-dated
spouse’s annuity is set up.
Such a case would lead to dy+ti

increasing by 1 at the time
of death of the primary an-
nuitant, but the correspond-
ing ly+t−

i
count would be un-

changed due to the new spouse’s annuity offsetting the main annuitant’s death. The columns of new
policy counts in Table 3 illustrates the impact of retrospective spouse annuities being set up.

R(s, u1, u2) = µ̂u1−s using extract at time u1

µ̂u1−s using extract at time u2
(3)

The impact of OBNR can be expressed as
a function, R(s, u1, u2), of the time s > 0 prior
to the extract at u1. R(s, u1, u2) is the ratio
of the µ̂y estimates using extracts at times u1 and u2, as in equation (3). R is only defined for s > c/2
and is plotted in Figure 7 for the FRA and UK3 portfolios. Both portfolios happen to have extracts
for June 2020 (u1) and September 2020 (u2) and there is a steady fall in reported mortality in the
months leading up to the June 2020 extract in each case (dramatically so for the FRA portfolio).

Figure 7: R(s, u1, u2) for FRA and UK3
portfolios. The horizontal axis is reversed.
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Figure 7 shows that OBNR most affects the recent mor-
tality estimates. Indeed, the most recent FRA ratio in Fig-
ure 7(a) is probably unreliable due to very small numbers
of deaths. This is partly due to different insurer adminis-
tration processes, but also to national differences in death
registration and probate handling. In the UK, for example,
insurers can use monthly feeds of deaths from the General
Registrar’s Office to match possible deaths among their
annuitants instead of waiting for notification.

The semi-parametric estimates of OBNR in Figure 7
are not wholly smooth and they are undefined for the pe-
riod c/2 years prior to the extract at time u1. R is also
dependent on the second extract at time u2 picking up all
the late-reported deaths, which is at best an approximation due to Type B deaths — Table 2 shows
that decade-long delays can occur and Figure 6 shows that material delays exist beyond a year for
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the UK3 portfolio. A better approach would be a parametric model, especially one that operated on
a single data extract.

5 A parametric approach
We first note that we are interested in reporting delays only (OBNR), rather the combined delay-
and-cost insurance models (IBNR) of Haastrup and Arjas [1996] and Dodd et al. [2015]. Such IBNR
models are “cost-orientated, discrete-time models” [Jewell, 1989], whereas we require a pure delay
model operating in continuous time.

There are numerous delay-only models, including for AIDS surveillance [Lawless, 1994], HIV
incubation time [Kalbfleisch and Lawless, 1991], cancer diagnosis and reporting to a central registry
[Midthune et al., 2005] and even delays in detecting bugs in software [Jewell, 1985]. A common theme
in these models is the availablity of secondary data, specifically the date of notification of death in
addition to the date of death itself. Delay data are necessarily right-truncated [Midthune et al.,
2005] and in some cases missing dates of notification can be accurately determined retrospectively
[Kalbfleisch and Lawless, 1991]. However, in the examples of the FRA and UK3 portfolios our delay
data are additionally interval-censored [Collett, 2003, Chapter 9] as well as right-truncated.

Jewell [1989] presents four classifications based on the availability of secondary data on delays
and concludes that categories with missing dates of notification are “uninformative and useless”
with respect to Bayesian methods. However, interval-censored delays are not entirely missing, and
are therefore neither uninformative nor useless, as shown in the distribution of minimum delays in
Figure 6. Nevertheless, inference using interval-censored, right-truncated data is tricky, and for many
insurers taking two extracts might not be practical. We therefore seek an approach that can infer
OBNR from a single data extract.

µOBNR
x,y (uj) = µ∗

x,yρ(uj − y, λ1) (4)We model OBNR-affected observed mortality, µOBNR
x,y (uj),

which is related to actual mortality, µ∗
x,y, as in equation (4).

ρ(s, λ1) is an OBNR scaling factor reflecting the fact that not all mortality is reported in a timely
manner. s is the positive-valued time before the date of extract, uj, and λ1 is the decay parameter
reflecting how quickly the OBNR effect changes with s. ρ(s, λ1) implicitly allows for unreported
deaths of both Type B and Type C in Figure 5 by modelling the shortfall in mortality as y approaches
the extract date, uj (see for example the shortfall demonstrated by the large negative residuals in
Figure 10(a)). In most ordinary business circumstances there will just be a single extract (j = 1),
but we use the index j to allow for the circumstances where a second extract is available, as for the
FRA and UK3 portfolios. We note an important difference between equation (4) on one hand and
existing IBNR models and pure delay models on the other: the OBNR in our data is a nuisance
effect and we only want to estimate it to eliminate it. Both the function ρ and the parameter λ1 are
therefore used in estimation, but neither plays any role in applications of the parameterised model
µ∗

x,y, such as pricing or reserving.
Logistic : seλ1/(1 + seλ1) (5)

Exponential : 1 − exp(−seλ1) (6)

Inverse tangent : 2
π

tan−1(seλ1) (7)

Gaussian : 2Φ
(
seλ1

)
− 1 (8)

Inverse exponential : 2
(
1 + exp

(
−seλ1

))−1
− 1 (9)

Squared exponential : 1 − exp(−s2eλ1) (10)

Some candidate functions for ρ are
listed in equations (5)-(10) and plotted in
Figure 8 for a specimen value of λ1. Fig-
ure 8(a) shows the variety of shapes pos-
sible, allowing the choice of function and
parameter λ1 to fit the delay shape of a
given portfolio. Figure 8(b) shows the role
of the decay parameter, λ1, with lower val-
ues meaning more OBNR.
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Figure 8: (a) OBNR functions with λ1 = 2, (b) Gaussian OBNR function with varying λ1. The horizontal
axis is reversed for comparison with Figure 7.
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One aspect of equation (4) is vulnerability to confounding [Midthune et al., 2005, p69]. The
choice of functions that are close to 1 until near the end of the exposure period forces the parameter
λ1 to pick up mostly OBNR effects. However, confounding of OBNR effects with seasonal effects
could happen when s < 0.5, say because uj was in the summer and so mortality would be falling
from the winter peak [Richards et al., 2020]; equally, if uj were in the winter, the rising mortality
since the summer would lead to under-stated OBNR effects. For s >> 0.5 there is also the risk of
confounding OBNR effects with a time trend [Midthune et al., 2005, p62]. To reduce the impact
of confounding, any model attempting to allow for OBNR effects should include both a time trend
and a seasonal component, albeit strong correlations may remain between estimates (see Table 9 in
Appendix B). To address the seasonal aspect of mortality, we use the cosine model from Richards
et al. [2020, Section 8], as shown in equation (11):

log µ∗
x,y = log µx,y + eζ cos (2π(y − τ)) (11)

τ ∈ [0, 1) represents the proportion of the year after January 1st when mortality peaks and eζ is
the peak additional mortality at that time (on a logarithmic scale). The two-parameter model for
seasonal mortality in equation (11) simultaneously identifies (i) the amplitude of the average-to-peak
seasonal variation (eζ) and (ii) the point after January 1st corresponding to the winter mortality peak
(τ). The full trough-to-peak variation is 2eζ , and the definition of equation (11) forces τ to identify
the winter peak, as opposed to the summer trough; we also assume that the peak is coincident in each
of the years covered by a particular data set. µx,y is the non-seasonal component to the mortality
hazard, i.e. varying in age and time only. The specific form of µx,y will depend on the age range
under study, x = x0, . . . , x1 say. Here we will use a variant of the Hermite II model of Richards [2020]
shown in equation (12):

log µx,y = (α + δ(y − 2000))h00(t) + m0h10(t) + ωh01(t) (12)

where t = (x − x0)/(x1 − x0) and the h functions are the cubic Hermite polynomials [Kreyszig, 1999,
p868] shown in Figure 9.
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Figure 9: Hermite basis splines for t ∈ [0, 1].
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To fit a survival model to
individual data we maximise
the log-likelihood function
in equation (13) [Macdon-
ald et al., 2018, Section 5.3]
for the OBNR-affected mor-
tality hazard, µOBNR

x,y (uj), at
age x at calendar time y us-
ing an extract at time uj.
Each life i enters observa-
tion at age xi at calendar
time yi and is observed for
ti years. di is an indicator
variable taking the value 1
if life i is reported to have
died at age xi + ti, or 0 otherwise. The potential for bias due to OBNR lies in the fact that cases with
di = 1 are by definition unaffected by reporting delays, while cases with di = 0 may be. Hx,y(t; uj) is
the integrated hazard function in equation (14). We refer to Richards et al. [2020, Appendix A] for
details of numerical integration of seasonally fluctuating hazard functions.

� = −
n∑

i=1
Hxi,yi

(ti; uj) +
n∑

i=1
di log µOBNR

xi,yi
(uj) (13)

Hx,y(t; uj) =
∫ t

0
µOBNR

x+s,y+s(uj)ds (14)

Equation (13) is the log-likelihood for a sur-
vival model with left-truncated data; see Mac-
donald et al. [2018, Section 4.3]. This contrasts
with survival models used in medical research,
where left-truncation is rare and where likeli-
hoods are usually for non-left-truncated data
[Collett, 2003, Chapter 6]. Note also that the structure of equation (4) means that OBNR effects
are allowed for without having to deal with the interval-sensored, right-truncated nature of reported
delays.

6 Effectiveness of parametric OBNR model
In this section we look at the effectiveness of the parametric OBNR model in terms of model fit.
Figure 10 shows the deviance residuals [McCullagh and Nelder, 1989, p39] without an OBNR term
(upper panels, ρ(s) = 1) and with a Gaussian OBNR term (lower panels). Although both portfolios
have large negative residuals for the experience closest to June 2020 due to OBNR, Figure 10(a)
shows that the FRA portfolio has a more severe OBNR effect with very large negative residuals.
Figure 10(d) also shows that the UK3 portfolio has been affected most strongly by covid-19 mortality,
with a residual of +10 for the fourth month of 2020 (+10.3 without the OBNR term and +9.8 with
it). The three next largest positive residuals in Figure 10(d) are all for January, reflecting (i) the
excess winter mortality beyond the simple cosine model of equation (11) and (ii) that the covid-19
mortality is worse than the worst recent winter excess. The lower value of λ̂1 for FRA indicates a
slower OBNR decay rate, and thus a larger OBNR effect.
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Figure 10: Monthly deviance residuals from model fits to June 2020 data for FRA and UK3 portfolio with
and without a Gaussian OBNR term. Note the change in vertical scale from (a) to (c) and (b) to (d) as the
large negative residuals are eliminated.
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(d) UK3, Gaussian ρ(s, λ̂1 = 3.24)

Table 4: Development of AIC for models fitted stepwise
to experience data from 1st Jan. 2015 to June 2020.

Model factors FRA UK3
Age only 165,588 166,769
+Gender -736 -518
+Time -79 -34
+Season -172 -156
+OBNR (Gaussian) -593 -93
Full model 164,008 165,968

Table 4 shows the stepwise development of
the AIC [Akaike, 1987], dispensing with the
small-sample correction as the number of lives
is very large [Macdonald et al., 2018, page 98].
For both portfolios the inclusion of a time trend
makes the smallest improvement in model fit,
while the larger change in fit due to the OBNR
effect in the FRA portfolio reflects the stark
change between panels (a) and (c) in Figure 10.
The OBNR functions in equations (5)-(10) do
not allow for a (quite reasonable) link between
reporting delays and age. However, they do allow for interactions between λ1 and categorical factors,
and we find that neither the FRA nor UK3 portfolios has significant variation in OBNR by gender.
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Table 5: AICs for OBNR models fitted to experi-
ence data from 1st January 2015 to June 2020.

OBNR model FRA UK3
Gaussian 164,008 165,968
Inverse exponential 164,010 165,968
Exponential 164,025 165,971
Squared exponential failed to fit 165,976
Inverse tangent 164,033 165,992
Logistic 164,062 166,001

Table 5 shows the differences in fit for the var-
ious OBNR models in equations (5)–(10). Al-
though these two portfolios differ in the extent
and timing of their OBNR, the various OBNR
functions have a similar order with respect to the
AIC, with the Gaussian OBNR model providing the
best fit (or best-equal fit). The exception is the
squared-exponential OBNR model, which failed to
fit properly as the seasonal component of the model
wouldn’t fit. Refitting the model with m0 = 0 in
equation (12) however worked, suggesting an occa-
sionally problematic interplay between parameters.

7 Parametric OBNR models as a forecast of delays
In this section we look at the ability of a parametric OBNR model fitted to a single data extract
to predict the pending delays. For this we will fit the model for the OBNR-affected mortality of
Section 5 to the data for the June extract, then we compare these OBNR functions to the effect of
pre-June deaths reported by September. For the actual delay effect we will use the semi-parametric
R function of equation (7); this will not be a complete statement of OBNR due to still-unreported
Type B deaths, but it will be a useful comparison.

Figure 11(a) shows the fitted OBNR curves, ρ(s, λ1), for the FRA portfolio, while Figure 11(b)
shows the best-fitting Gaussian OBNR curve versus the semi-parametric R(s, u1, u2) from Figure 7(a).
Figure 11(b) shows that it is possible to make workable estimates of mortality OBNR for a portfolio
based on just a single extract of data, i.e. without any secondary data on the delays themselves —
the fitted OBNR adjustment based on data up to time u1 follows the broad shape and trajectory
of the OBNR in the subsequent experience after u1. In this sense the OBNR function is actually a
short-term forecast based on patterns leading up to the extract date.

In contrast, Figure 12(b) shows that for the UK3 portfolio the best-fitting of the OBNR functions
in June proved to be a poorer forecast of the actual experience represented by the semi-parametric
estimate using the late-reported deaths to September. In fact, the two poorest-fitting OBNR functions
would have done a better job. This contrast can perhaps be explained by the fact that the UK3
portfolio has a much smaller OBNR issue — Table 2 shows that the UK3 portfolio has a much
lower proportion of Type C deaths compared to the FRA portfolio. A possible reason for the better
performance of the parametric OBNR function for the FRA portfolio is that the OBNR issue is both
relatively larger and affects a longer period of time leading up to the extract. This is suggested by
the pattern of residuals in Figure 11(a). The parametric OBNR functions therefore work best where
they are most needed. Equally, where they are least needed, the precise choice of OBNR function is
less critical.
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Figure 11: (a) Estimated OBNR functions for June 2020 extract for FRA portfolio, (b) comparison of
June OBNR estimates with OBNR function with lowest AIC against subsequent estimated OBNR using
September 2020 extract. Panel (b) shows that the best-fitting parametric OBNR function using the June
extract proved to be a workable overall forecast of the OBNR; this is despite the fact that the precise
trajectory of the actual OBNR lies outside the 95% confidence envelope for the estimated OBNR function.
The horizontal axes are reversed.
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Figure 12: (a) Estimated OBNR functions for June 2020 extract for UK3 portfolio, (b) comparison of OBNR
estimates with highest and lowest AICs against subsequent estimated OBNR using September 2020 extract.
The OBNR functions with the joint-equal lowest AIC in the June extract proved to be poor projections of
what the estimated OBNR was using the September extract; in fact the OBNR functions with the highest
AIC (logistic and inverse tangent) would have been better forecasts. The horizontal axes are reversed.
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The final step is to make use of the fitted OBNR function to estimate current mortality. An
illustration of this is given in Figure 13: panel (a) shows µ̂2015+t from equation (2) using the extract
in June 2020, where the OBNR issue means that the covid-19 shock in April 2020 (marked with the
vertical dotted line) is entirely absent. Panel (b) shows µ̂2015+t/ρ(s, λ̂1) for the Gaussian ρ function
in equation (8), where λ̂1 = 1.32332 (s.e. 0.0508) is estimated from the same June 2020 extract; the
resulting adjustment makes little difference to the pre-2020 mortality, but both the January winter
peak and the covid-19 spike now appear. Panel (c) shows µ̂2015+t calculated using the extract from
September 2020, i.e. with three months additional reporting of delayed deaths. We can see that the
OBNR adjustment in Figure 13(b) has done a creditable job of predicting the covid-19 spike in April
2020, albeit it has slightly over-stated the January 2020 winter peak. The parametric OBNR model
therefore allows actuaries to estimate OBNR effects from a single extract, thus providing up-to-date
short-term forecasts of what emerging portfolio mortality levels actually are, even in the face of
material reporting delays.
Figure 13: µ̂2015+t for FRA portfolio with c = 0.1: (a) calculated using June 2020 extract; (b) as (a) but
adjusted using Gaussian OBNR function estimated from June 2020 extract; (c) calculated using September
2020 extract.
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8 Conclusions
Portfolio data handled by actuaries contain individual records observed over a number of years.
This paper presents a semi-parametric estimator for the mortality hazard that illustrates short-
term fluctuations in time, such as seasonal variation and the covid-19 mortality shock. Using this
estimator we find that the initial covid-19 shock peaked in the same week in April 2020 for three
separate portfolios in France, the UK and the US. The visual nature of the estimator makes it a
practical tool not just for actuarial work analysing portfolio data, but also in communicating with
non-specialists.

However, the semi-parametric estimator has various limitations, not least its vulnerability to
reporting delays for deaths. We present a parametric model that allows for the effect of these delays
and quantify the extent and impact of such delays on the most recent stated mortality rates. The
model permits the estimation of an OBNR adjustment from a single data extract, thus providing
a means for continuous, up-to-date reporting. When combined with a model allowing for seasonal
variation, this allows actuaries to quantify mortality effects as they happen, while providing short-
term forecasts for planning and taking management action.
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Appendices
A Detecting data issues with the semi-parametric estimator
The estimator in equation (2) is primarily for investigating short-term fluctuations in time, espe-
cially mortality spikes and seasonal variation. However, we have found that the estimator also has
application to the identification of data-quality issues. This appendix demonstrates some examples.

Figure 14 shows that the June 2019 extract for the FRA portfolio in Table 1 has three phases:
(i) some sparse deaths data for a period up to around 1987 that clearly cannot be used for mortality
analysis, (ii) a period of stable experience over 1988–2001, and (iii) a period post-2002 also with
stable experience, but with a far higher aggregate mortality rate. The first question is what caused
the jump between the second and third phases? We could be dealing with a portfolio that was
merged with another portfolio with a substantially higher age, or else the removal of a block of
annuities with higher average age as in Figure 1 for UK3. However, in this case the policy counts
represented by ly+t−

i
(not shown) demonstrate steady growth and no discontinuity, which means that

the 1988–2001 phase of experience data must be systematically missing death records, regardless of
its apparent stability. The estimator in equation (2) reveals the usable part of the exposure period
to be post-2002 for the FRA portfolio.

Figure 14: Plot of µ̂1982+t using June 2019 extract for FRA portfolio in Table 1. Source: own calculations
using equation (2) with c = 0.3. Only the period from 2002 onwards has complete death data for analysis,
although the spike at the start of 2013 suggests some invalidly processed deaths.
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The spike in mortality rate at the start of 2013 in Figure 14 is also of interest. This was traced to
670 “deaths” on 1st January 2013, which was clearly not the actual date of death for these annuitants.
This sort of data issue would also be caught by the tabulation of the most commonly occurring field
values [Macdonald et al., 2018, Section 2.7]. However, the estimator in equation (2) provides a clear
visual indicator that something is amiss with the data at the start of 2013.

The estimator in equation (2) can also highlight periods of potentially suspect data beyond the
two examples in Figure 14. Table 6 summarises the data available for three pension schemes of
roughly comparable size, while Figure 15 shows the estimator in equation (2) for each. Figure 15(a)
shows what happens when the dates of death are not accurately recorded — the unclear signal is due
to most deaths for CAN2 being recorded as happening in the middle of each month, rather than on
the actual date of death. Figure 15(b) shows that the expected seasonal pattern is present for CAN3
in 2016–2019, but that it is missing from late 2013 to early 2015; the record counts are consistent and
have no discontinuity (not shown), so something is probably amiss with the death recording prior
to mid-2015. In contrast, Figure 15(c) shows a reliable seasonal pattern for the SCOT portfolio,
indicating that the data have no obvious time-based issues.

17



18

Table 6: Overview of three medium-sized pension schemes, none of which contains mortality experience of
the covid-19 pandemic. The naming convention was chosen for consistency with Richards et al. [2020], which
uses two of the same portfolios.

Max. Total
Country Portfolio Description lives deaths
Canada CAN2 Single-employer defined-benefit occupational pension scheme. 9,967 2,953

CAN3 Industry-wide defined-benefit occupational pension scheme
for blue-collar workers.

26,494 5,989

Scotland SCOT Defined-benefit occupational pension scheme for a single Scot-
tish local authority.

13,638 3,732

Figure 15: Plot of µ̂2013+t for CAN2 and CAN3 portfolios and µ̂2002+t for SCOT in Table 6. Source: own
calculations using equation (2) with c = 0.5. The lack of a clear signal for CAN2 is caused by most deaths
being logged as occurring in the middle of the month. The CAN3 portfolio is missing the expected seasonal
pattern from late 2013 to early 2015, raising questions over the accuracy of the experience data during that
period. In contrast, the SCOT portfolio has a clear recurring seasonal signal throughout, indicating that
the data have no obvious time-based issues for the period shown.
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A key step in reinsurance transactions is the validation of the data available, and individual policy
records enable particularly thorough data-quality checks [Macdonald et al., 2018, Chapter 2]. How-
ever, data-protection and privacy laws in many territories often restrict the sharing and processing
of personal data; examples include GDPR in the EU and UK [Council of European Union, 2016],
CCPA in California [State of California Office of Legislative Counsel, 2018] and PIPEDA in Canada
[Minister of Justice for Canada, 2018]. Data-protection laws typically apply to personally identifiable
data, i.e. data that could be used to identify a living person (Canadian laws are even stricter and
further protect the personal data of the recently deceased). Such laws sharply reduce the detail in
data shared between counterparties for bulk annuities, longevity swaps and reinsurance treaties. This
unfortunately also limits those counterparties’ ability to validate the experience data. Particularly
problematic are cases where risk, and therefore data, are transferred between jurisdictions, e.g. from
an insurer covered by the EU’s GDPR directive to a reinsurer outside the European Union. This
forces the consideration of new techniques and tools for checking the validity of mortality-experience
data. As discussed in Section 2, the estimator in equation (2) requires no personal data for its
computation. There is therefore no reason for a risk cedant not to pass over the minimum data
fields required, making equation (2) a useful data-quality check in an environment of restricted data
sharing.
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B Parameters
There are two kinds of parameters to be set for a Hermite model [Richards, 2020] of mortality: (i)
configuration parameters, whose values are decided in advance by the analyst, and (ii) parameters
whose values are estimated from the data.

B.1 Parameters set by the analyst
Table 7 sets out the configuration parameters that need to be set in advance by the analyst, i.e. they
are not estimated from the data. The values used in the main body of the paper are given.

Table 7: Configuration parameters for the Hermite model family.
Parameter Value Description and role

x0 50 Age below which log µx is deemed constant in age; see equation (12).
x1 110 Age above which log µx is deemed constant in age; see equation (12).

In addition, the analyst must also choose an OBNR function from equations (5)–(10).

B.2 Parameters estimated from the data
Table 8 sets out the parameters whose values are estimated from the data by maximum likelihood.

Table 8: Overview of seasonal and OBNR parameters.

Parameter Name Description and role of parameter
α Intercept log µx0 , the minimum mortality hazard at age x0 and below.

m0 AgeGradientYoungest Initial rate of change of log(mortality) with increasing age
from x0.

ω Oldest log µx1 , the limiting mortality hazard at age x1 and above.
δ Time Rate of change by calendar time of log(mortality) at age x0.
λ1 OBNRdecay Rate of decay of OBNR working backwards in time from ex-

tract date.
ζ SeasonalExcess Amplitude of seasonal peak mortality from baseline (log

scale); see equation (11).
τ SeasonalPeak Time of year of peak seasonal (winter) mortality, expressed

as fraction of year from 1st January; see equation (11).

B.3 Parameter correlations
A potential issue with the parametric model in Section 5 is that of confounding. Under normal
circumstances, a parametric OBNR model will carry the risk of confounding with seasonal effects.
For this reason we should include a seasonal term in an OBNR model, as per equation (11). However,
the data extracts for the FRA and UK3 portfolios were also taken at a time of dramatic short-
term changes in mortality levels caused by covid-19 [The Novel Coronavirus Pneumonia Emergency
Response Epidemiology Team, 2020], so there remains potential for confounding even with a seasonal
mortality model. Table 9 shows the percentage correlations between the parameters for the best-
fitting OBNR model fitted to the FRA data set (this being the portfolio with the most pronounced
OBNR effect). The OBNRdecay estimate, λ̂1, has a strong negative correlation with the time trend,
δ, albeit it is not as strong as some other parameter pairings.
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Table 9: Percentage correlations between parameter estimates in the model in Table 4 fitted to FRA data
with an AIC of 164,008. Of note is the absence of any correlation between gender and either OBNR, season
or time trend.
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AgeGradientYoungest (m0) 100 6 -12 -40 2 -63 0 -1 -10
Gender.M 6 100 -66 -13 0 31 0 0 0
Gender.M:Oldest -12 -66 100 12 0 -42 0 0 0
Intercept (α) -40 -13 12 100 37 17 -6 -11 -86
OBNRdecay (λ1) 2 0 0 37 100 -9 -18 -16 -43
Oldest (ω) -63 31 -42 17 -9 100 -2 1 8
SeasonalExcess (ζ) 0 0 0 -6 -18 -2 100 2 6
SeasonalPeak (τ) -1 0 0 -11 -16 1 2 100 12
Time (δ) -10 0 0 -86 -43 8 6 12 100

Table 10 shows the correlations between OBNRdecay and other parameter estimates when varying
the length of the exposure period. The estimate and standard error of the OBNR decay parameter
λ1 are both robust to the length of the exposure period: from 1.3442 (s.e. 0.0532) with 4.5 years to
1.33501 (s.e. 0.0479) with 8.5 years of experience data (with λ̂1 = 1.32332 (s.e. 0.0508) using 5.5
years as in the main body of the paper).

Table 10: Variation by exposure-period term of percentage correlations between OBNRdecay (λ̂1) and other
parameter estimates. FRA portfolio with June 2020 extract, Gaussian OBNR function from equation (8).
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2016-01-01 4.5 2 0 0 43 -10 -19 -19 -47
2015-01-01 5.5 2 0 0 37 -9 -18 -16 -43
2014-01-01 6.5 2 0 0 32 -8 -17 -14 -39
2013-01-01 7.5 2 0 0 27 -8 -16 -13 -36
2012-01-01 8.5 2 0 0 24 -8 -15 -12 -33
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