Webinar for Longevitas clients

Mortality shocks in annuity portfolios

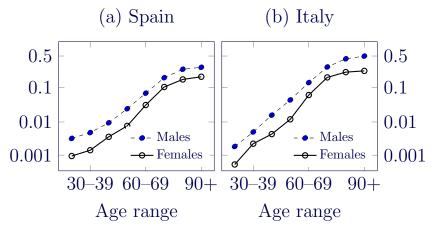
Stephen J. Richards 10th February 2021

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

www.longevitas.co.uk 1/70

Overview

- 1. Covid-19
- 2. Annuity portfolios
- 3. Non-parametric approach
- 4. Reporting delays
- 5. Parametric approach
- 6. Conclusions

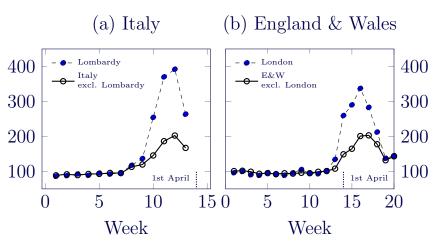


- Covid-19 is the disease caused by the novel SARS-CoV-2 virus[†].
- Covid-19 can be fatal...

 $^{\dagger} \mbox{The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team [2020].}$

Mortality rate by age for confirmed covid-19 infection[‡]. Logit scale.

 $^{^{\}ddagger}\mathrm{Own}$ calculations using data from CCAES [2020] and ISS [2020].


- Covid-19 is the disease caused by the novel SARS-CoV-2 virus[†].
- Covid-19 can be fatal...

...and its arrival was obvious in national mortality statistics...

 $^{\dagger} \mbox{The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team [2020].}$

Deaths in early 2020 as percentage of average in 2015–2019.

 $^{^{\}clubsuit}$ Source: own calculations using data from Istat [2020] and ONS [2020].

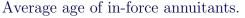
www.longevitas.co.uk

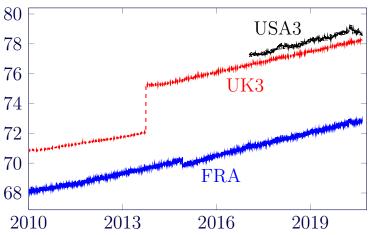
Covid-19 mortality shock was:

- Intense.
- Short-term (measured in weeks).
- Very localised.

How might it impact annuity portfolios?

2 Annuity portfolios


2 Annuitant experience data **Tongevitas**



		In-force
	Cumulative	1st April
Portfolio	deaths	2020
FRA	47,026	251,330
UK3	109,878	$146,\!269$
USA3	145,153	723,762

Data extracted in September 2020. Source: Richards [2021].

Source: Richards [2021].

3 Non-parametric approach

3 Definitions

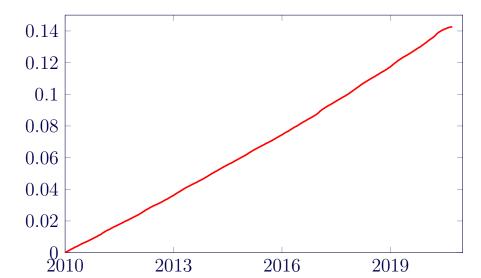
- μ_x is the mortality hazard at age x.
- $\Lambda_x(t) = \int_0^t \mu_{x+s} ds$ is the integrated hazard.
- Normally the above are defined with respect to age, x.
- What if we define things with respect to time, y?

3 Definitions

- $\{y + t_i\}$ is the set of distinct dates of death,
- d_{y+t_i} is the number of deaths at date $y+t_i$, and
- $l_{y+t_i^-}$ is the number of lives immediately before $y + t_i$.

3 Nelson-Aalen estimator

$$\hat{\Lambda}_{y,t} = \sum_{t_i \le t} \frac{d_{y+t_i}}{l_{y+t_i^-}} \tag{1}$$


 $\hat{\Lambda}_{y,t}$ estimates the integrated hazard.

See

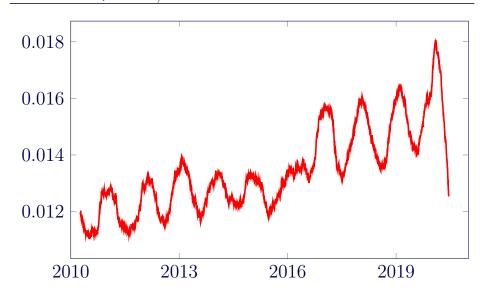
https://www.longevitas.co.uk/site/informationmatrix/visualising covid 19 in experience data.html.

3 FRA portfolio, $\hat{\Lambda}_{2010,t}$

- $\hat{\Lambda}_y$ is near-linear (and rather dull).
- What about taking first differences?

First central difference around $\hat{\Lambda}_{y,t}$:

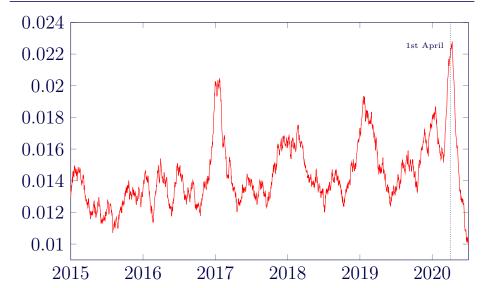
$$\hat{\mu}_{y+t} = \frac{\hat{\Lambda}_{y,t+c/2} - \hat{\Lambda}_{y,t-c/2}}{c} \tag{2}$$


where c > 0 is the bandwidth parameter.

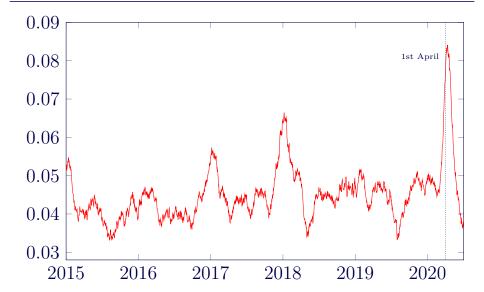
See

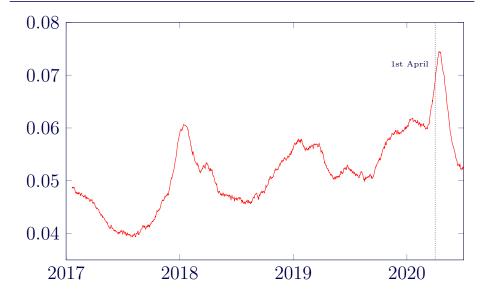
https://www.longevitas.co.uk/site/informationmatrix/visualising covid 19 in experience data.html.

3 FRA, $\hat{\mu}_{2010,t}$, c = 0.5



- $\hat{\Lambda}_y$ is near-linear (and rather dull).
- However, $\hat{\mu}_y$ reveals rich detail of seasonal patterns.
- Can $\hat{\mu}_u$ reveal the covid-19 shock?


3 FRA $\hat{\mu}_{2015+t}$, c = 0.2


3 UK3 $\hat{\mu}_{2015+t}$, c = 0.2

3 USA3 $\hat{\mu}_{2017+t}$, c = 0.2

Covid-19 shock hit French, UK and US annuity portfolios at the same time, peaking in April 2020.

3 Data privacy

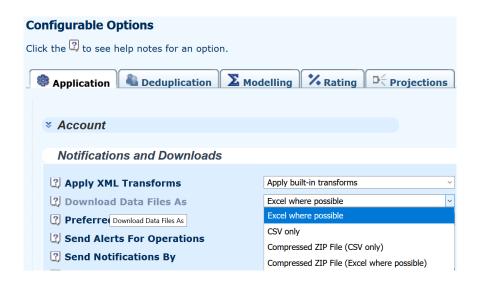
- Only need:
 - ▶ Date of annuity commencement,
 - ▶ Date of annuity cessation, and
 - ▶ Nature of cessation (death, withdrawal etc).
- No personal data required.
- GDPR, CCPA and PIPEDA do not apply!

Advantages:

- Reveals seasonal variation.
- Reveals mortality shocks.
- Requires no personal data (GDPR-, CCPA- and PIPEDA-safe).

Drawbacks:

- Smoothing understates shock.
- Can't separate shock from seasonal effect.
- Doesn't allow for key risk factors like age.
- Not defined for most recent c/2 years.
- Affected by reporting delays.



Generating $\hat{\Lambda}_y$ and $\hat{\mu}_y$ in Longevitas:

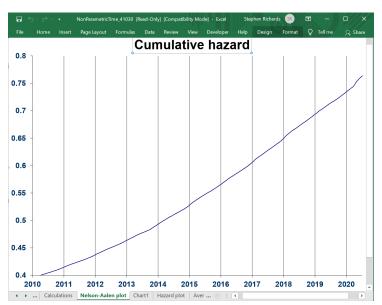
- Run a data audit.
- Set **Download Data Files As** to "Excel".
- Click on Time icon.

3 Set downloads to Excel

www.longevitas.co.uk 33/70

3 Click for spreadsheet

www.longevitas.co.uk 34/70


$3 y + t_i, l_{y+t_i^-} \text{ and } d_{y+t_i}$

4	А	В	С			
1	All					
2	Time	Lives	Deaths			
3	1944.746	1	0			
4	1975.301	1117	1			
5	1975.523	1166	1			
6	1975.929	1271	1			
7	1975.978	1284	1			
8	1976.268	1438	1			
9	1976.331	1465	1			
10	1976.617	1582	1			
11	1977.052	1744	1			
12	1977.137	1769	1			
13	1977.164	1780	1			
14	1977.203	1787	1			
15	1977.855	2041	1			
16	1977.868	2045	1			
17	1978.101	2133	1			
Mortality by time						

3 Graph of $\hat{\Lambda}_{y+t_i}$

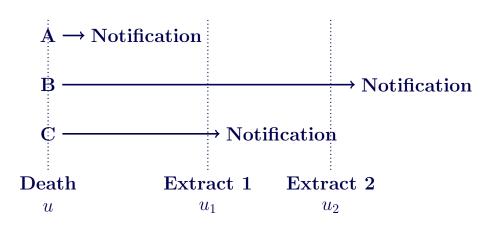
3 Graph of $\hat{\mu}_{y+t_i}$

4 Reporting delays

4 Reporting delays

Consider same week for UK3 using two extracts:

	June 2020 extract:		Sept. 2020 extract:	
Date	In-force	Deaths	In-force	Deaths
2020-06-11	145,166	6	144,934	18
2020-06-12	145,163	3	144,920	16
2020-06-13	145,168	9	144,918	14
2020-06-14	145,159	1	144,909	7
2020-06-15	145,162	3	144,906	15
2020-06-16	n/a	n/a	144,898	8
2020-06-17	145,168	3	144,902	29

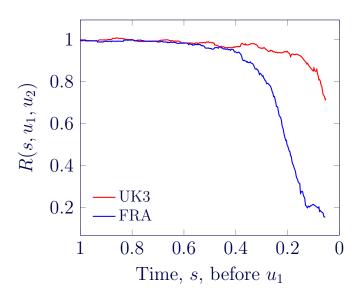

www.longevitas.co.uk

4 Reporting delays

- Assume we have two extracts at time u_1 and u_2 $(u_1 < u_2)$.
- Assume a death occurs at time $u < u_1$.
- There are three possible reporting types...

- Type A deaths reported by time of first extract.
- Type B deaths reported after second extract. Unknown to us!
- Type C deaths reported between extracts.

- Types B and C are occurred-but-not-reported (OBNR).
- Similar term IBNR (incurred-but-not-reported) refers to general insurance claims.
- The distinction was made by Lawless [1994].


Calculate ratio of $\hat{\mu}_y$ estimates using two extracts:

$$R(s, u_1, u_2) = \frac{\hat{\mu}_{u_1 - s} \text{ using extract at time } u_1}{\hat{\mu}_{u_1 - s} \text{ using extract at time } u_2}$$
(3)

OBNR impact negligible when R is close to 1.

4 Impact of reporting delays

www.longevitas.co.uk

4 Reporting delays (OBNR)

- OBNR affects most recent mortality estimates.
- Most impact within 0.25 years of extract.
- Minimal impact 0.75 or more years before extract.

See https://www.longevitas.co.uk/site/informationmatrix/reportingdelays.html.

5 Parametric approach

Look again at the ratio measuring the impact of OBNR:

$$R(s, u_1, u_2) = \frac{\hat{\mu}_{u_1 - s} \text{ using extract at time } u_1}{\hat{\mu}_{u_1 - s} \text{ using extract at time } u_2}$$
(4)

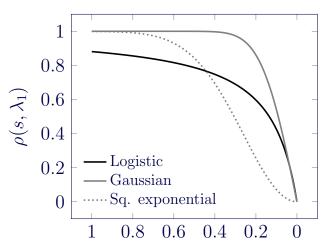
We can re-word this as follows:

$$\rho = \frac{\text{OBNR} - \text{affected } \hat{\mu}_y}{\text{Underlying } \hat{\mu}_y}$$
 (5)

We can re-arrange as follows:

OBNR-affected $\hat{\mu}_y = \text{Underlying } \hat{\mu}_y \times \rho$

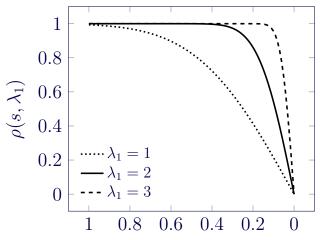
5 Parametric approach


Model for OBNR-affected mortality, $\mu_{x,y}^{OBNR}$:

$$\mu_{x,y}^{OBNR} = \mu_{x,y}^* \rho(u_1 - y, \lambda_1)$$
 (6)

- $\mu_{x,y}^{OBNR}$ is reported mortality,
- $\mu_{x,y}^*$ is actual mortality experienced,
- $\rho(s, \lambda_1)$ is scaling factor for OBNR, and
- λ_1 is the OBNR decay parameter.

5 Options for $\rho(s, \lambda_1 = 2)$



Time, s, in years before data extract

5 Role of λ_1

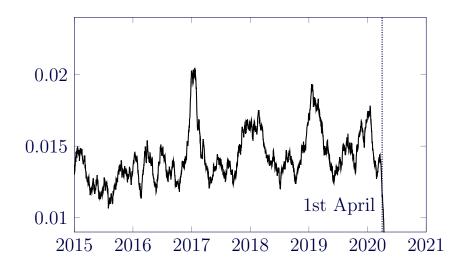
Gaussian OBNR function:

Time, s, in years before data extract


5 Forecasting

- Can we use a model at time u_1 to predict the unreported deaths by time u_2 ?
- Can we use the OBNR function to adjust for unreported deaths?

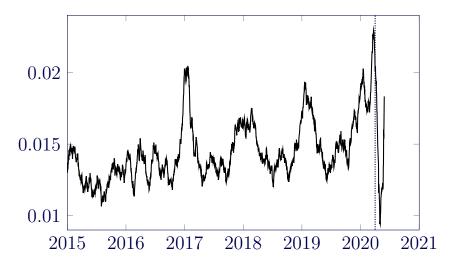
5 Forecasting OBNR



www.longevitas.co.uk 57/70

5 Adjusting for OBNR

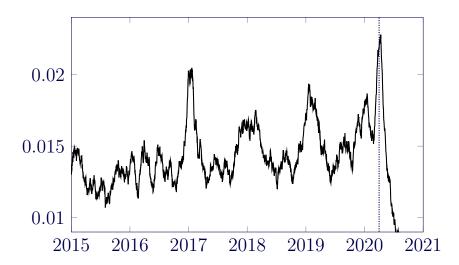
FRA, June extract:



www.longevitas.co.uk

5 Adjusting for OBNR

FRA, June extract with Gaussian OBNR adjustment:

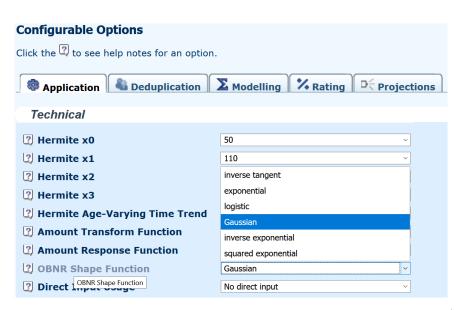


www.longevitas.co.uk

5 Adjusting for OBNR

FRA, September extract:

5 OBNR modelling



Fitting OBNR models in Longevitas:

- Set OBNR shape function.
- Select Hermite model.
- Tick OBNR term in model specification.

5 Set OBNR shape function

www.longevitas.co.uk 62/70

5 Tick OBNR model term

🖸 Term Groups To Include			
	?Term Group	Pixed Terms	?Optional Terms
Include	☐ Selection	SelectionInitial SelectionTerm	☐ SelectionGradient
	☑ Season	SeasonalExcess SeasonalPeak	☐ SeasonalAge
	☐ Amount	AmountTransformParameter AmountUltimate	☐ AmountGradientInitial☐ AmountGradientUltimate
	☑ OBNR	OBNRdecay	
Continue			

www.longevitas.co.uk

6 Conclusions

6 Conclusions — I

- Covid-19 shock detectable in annuity portfolios.
- Shock peaked in April 2020 in France, UK and USA.
- Non-parametric methods are privacy-safe.

6 Conclusions — II

- Reporting delays affect most recent experience.
- However, parametric models can allow for delays...
 ... and provide forecasts of unreported deaths.

- CCAES. Actualización no. 120. Enfermedad por el coronavirus (COVID-19). 29.05.2020. Technical Report 120, Centro de Coordinación de Alertas y Emergencias Sanitarias, May 2020.
- ISS. Epidemia COVID-19 Aggiornamento nazionale 16 giugno 2020 ore 11:00. Technical report, Instituto Superiore de Sanità, 2020.
- Istat. Total deaths per age class, week of demographic event and municipality of residence at the time of death. Technical report, Istituto Nazionale di Statistica, 2020. URL

https://www.istat.it/en/archivio/240106.

References II

- J. F. Lawless. Adjustments for reporting delays and the prediction of occurred but not reported events. Canadian Journal of Statistics, 22(1):15–31, 1994. doi: https://doi.org/10.2307/3315826.n1.
- ONS. Deaths registered weekly in England & Wales. Technical report, 2020. URL https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinen
- S. J. Richards. Mortality shocks and reporting delays in portfolio data. *Longevitas Ltd*, 2021.

References III

The Novel Coronavirus Pneumonia Emergency
Response Epidemiology Team. The epidemiological
characteristics of an outbreak of 2019 novel
coronavirus diseases (COVID-19) — China, 2020.
China CDC Weekly, 2:113, 2020. ISSN 2096-7071.
URL http://weekly.chinacdc.cn//article/id/
e53946e2-c6c4-41e9-9a9b-fea8db1a8f51.

More on longevity risk at www.longevitas.co.uk

7 Legal matters

Longevitas is a registered trademark of Longevitas Ltd:

- in the UK (No. 2434941),
- in the USA (No. 3707314), and
- in the European Union (No. 5854518).