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Introduction

This note describes a methodology for use in graduating population mortality rates for an individual calendar
year. It is based on existing techniques in peer-reviewed journals and papers, and is free to use. In addition
to smoothing the mortality rates, it is also capable of extrapolating rates to higher ages where data is sparse
or even non-existent. A free implementation of this method is available at www.longevitas.co.uk/graduate,
along with an updated version of this note.

Method

We assume we have a vector of death counts, dx, where x is the age last birthday. We further assume that
we have corresponding central exposed-to-risk data, ex+ 1

2
, i.e. mid-age population estimates. We assume

that the number of deaths is a random variable, Dx, with a Poisson distribution, i.e.

Dx ∼ Poisson
(
ex+ 1

2
× µx+ 1

2

)
where µx+ 1

2
is the force of mortality (hazard rate) applying at age x+ 1

2 . For flexibility we use a basis of m
B-splines† for the force of mortality as follows:

logµx+ 1
2

=

m∑
j=1

θjBj

(
x+

1

2

)
(1)

where Bj

(
x+ 1

2

)
is the jth B-spline evaluated at x+ 1

2 and the θj are coefficients to be estimated. Richards,
Kirkby and Currie (2006) give a worked example of how the heights of the B-splines are varied by the θj
and how the products of the Bj and θj are summed to form the value of logµ. By working on a logarithmic
scale, the θj are free to vary across the real line.

To estimate the θj we form a simple likelihood function for maximisation:

L ∝
∏
x

1

dx!

(
ex+ 1

2
× µx+ 1

2

)dx

exp
(
−ex+ 1

2
× µx+ 1

2

)
(2)

although in practice we would maximise the log-likelihood function, l, defined as follows after dropping
additive constants involving data only:

` =
∑
x

dx logµx+ 1
2
−
∑
x

ex+ 1
2
× µx+ 1

2
(3)

If the spacing between the number of splines is too small we could have an erratic pattern of the θj , so we
will adapt Equation 3 to include a penalty function as follows:

`p = `− λP (θ) (4)

where P (θ) is a penalty function to penalise roughness in the θj and λ is a parameter controlling the degree
of smoothing applied. A common example is to use a second-order penalty function, such the following:

P (θ) = (θ1 − 2θ2 + θ3)
2

+ . . .+ (θm−2 − 2θm−1 + θm)2 (5)

† A B-spline is composed piecewise from cubic polynomials, and takes the value of zero outwith a certain
range. The polynomials are constructed such that they are smooth at the join points or knots. A B-spline
basis is constructed such that these join points occur at the central knot points of other splines, thus making
the B-splines overlap with each other. In a cubic B-spline basis, any given point will be covered by at
most four B splines — see Richards, Kirkby and Currie (2006) for a detailed discussion and example. The
flexibility of a B-spline basis comes from the fact that the height of each B-spline is free to vary independently
of all other B-splines.
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The expression `p is known as a penalized log-likelihood and, for a given value of λ, the maximum penalized
log-likelihood estimate of θ is given by maximising Equation 4. The value of λ can either be pre-set, or else
selected by picking the value of λ which minimises an information criterion, such as the AIC, BIC or GCV.

Why structure things this way?

The model is structured around logµx due to the greater theoretical robustness this gives. By working on a
logarithmic scale, we ensure that µx is always positive. By working with µx, we ensure that any derived qx
will automatically lie in the interval (0, 1) using the standard result:

qx = 1− exp

(
−
∫ 1

0

µx+sds

)
(6)

In practice we would use the following approximation:

qx ≈ 1− exp
(
−µx+ 1

2

)
(7)

but the same point holds true: by using µx we guarantee that any derived values for qx lie in (0, 1) without
imposing additional checks or constraints. Equally, we can derive any survival probability using the standard
result:

tpx = exp

(
−
∫ t

0

µx+sds

)
(8)

but again in practice we would use the following simple approximation for integer t:

tpx ≈ exp

(
−

t−1∑
i=0

µx+i+ 1
2

)
(9)

Some data sets come tailor-made for modelling µx: the ONS population data for England and Wales, for
example, has death counts at age last birthday in each calendar year, together with mid-year population
estimates. Other data sets will have initial population estimates more immediately suitable for a Binomial
model of death counts, but the benefits of working with µx are such that the exposure data in such instances
should be modified to allow modelling of µx. This is done by the simple approximation of central exposure
by deducting half of the deaths from the initial exposure.

The penalty function in Expression (5) shows a quadratic penalty function, but there are other penalty
functions which could potentially be used. However, a quadratic penalty leads to a linear extrapolation
of hazard rates on a logarithmic scale, which seems the most appropriate assumption. Figure 1 shows an
example of this — the quadratic penalty function produces a linear extrapolation of log(mortality hazard)
to higher ages. Furthermore, a linear function for logµx means a slower-than-linear increase in log qx at
older ages — see Richards (2008). This is a desirable feature of extrapolated rates, as such so-called late-life
mortality deceleration is a commonly observed feature of many populations (Gavrilov and Gavrilova, 2001).
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Figure 1. Crude mortality rates for males in England and Wales in 2004 (•) with fitted smooth rates and
extrapolation to age 120 (—).
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Note that in order to provide a linear extrapolation on a logarithmic scale, it is necessary that the knots are
evenly spaced. A knot spacing of five years would be fine for most instances (as in Figure 1), but greater
robustness could be ensured by using a spacing of ten years. This sacrifices a small amount of local flexibility
in order to gain robustness to wild data values at the uppermost ages.

Advantages of this method

There are several advantages to this method:

1. It is simple. The method can be programmed in a few lines of R, or (with more work) as an Excel
spreadsheet.

2. It is flexible — a basis of B-splines can accommodate any reasonable pattern of mortality rates by age.

3. It provides an automatically smooth fit, thus eliminating any “kinks” in the data.

4. It is a statistical method in that the ages with greater numbers of deaths and exposures have the greatest
influence on the graduation.

5. As a statistical method it is capable of extrapolating mortality rates by age — see Richards and Currie
(2011). This is useful in extending limited data sets to advanced ages, thus enabling the calculation of
complete life expectancies instead of temporary life expectancies.

6. Both graduation and extrapolation happen in a single step, rather than two separate processes. Extrap-
olated rates are therefore consistent with the graduated ones.

7. It is structured around µx on a logarithmic scale, which means all derived values for µx, qx and tpx will
automatically be on valid scales.

8. Using a second-order penalty gives a log-linear extrapolation for µx. This means a decelerating increase in
log qx, thus giving the late-life mortality decleration expected of mortality rates at the highest extrapolated
ages (Gavrilov and Gavrilova, 2001).
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Items to watch

There are some potential pitfalls to avoid:

A. With closely spaced knots it is sometimes possible for extrapolation to exhibit excessive sensitivity to
edge effects. This can be avoided by using a wide knot spacing between splines, e.g. 10 years.

B. Over-dispersion. In larger populations the Poisson assumption of variance equalling the mean is often
violated and can lead to under-smoothing from small values of λ. This can be allowed for either (i) by
including an explicit over-dispersion parameter as in Djeundje and Currie (2011), or (ii) by keeping a wide
knot spacing, or (iii) by enforcing a large value of λ.
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