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Allowing for shocks in portfolio mortality models

Richards, Stephen J.∗

August 2, 2021

Abstract

The covid-19 pandemic creates a challenge for actuaries analysing experience data that in-
cludes mortality shocks. Without sufficient local flexibility in the time dimension, any analysis
will be biased by the temporarily higher mortality. Also, depending on where the shocks sit in
the exposure period, any attempt to identify mortality trends will be distorted. We present a
methodology for analysing portfolio mortality data that offers local flexibility in the time dimen-
sion. The approach permits the identification of seasonal variation, mortality shocks and late-
reported deaths (OBNR). The methodology also allows actuaries to measure portfolio-specific
mortality improvements. Finally, the method assists actuaries in determining a representative
mortality level for long-term applications like reserving and pricing, even in the presence of
mortality shocks. Results are given for a mature annuity portfolio in the UK, which suggest
that the Bayesian Information Criterion (BIC) is better for actuarial model selection than the
AIC.

Keywords: mortality trends, seasonal variation, covid-19, B-splines, OBNR.

1 Introduction
The covid-19 pandemic [The Novel Coronavirus Pneumonia Emergency Response Epidemiology
Team, 2020] creates the need to allow for mortality shocks in experience analysis performed by
actuaries. The intense nature of the repeated covid-19 mortality shocks in many countries means
that traditional methods based around annual qx-style mortality rates are inadequate: mixing periods
of shock and non-shock mortality under-states the true intensity of mortality spikes. Furthermore,
mortality shocks in the experience data may lead to bias in bases for reserving and pricing. A
continuous-time methodology that copes with sharp fluctuations in time is required.

This paper covers the modelling and analysis of portfolio experience data only. The subject of
future mortality trends is out of scope, although Section 9 briefly considers the topic of year-on-year
improvements. In our models we make extensive use of splines, which are flexible mathematical
functions. There are numerous different kinds of spline, each with different properties and thus
suitable for different purposes. In this paper we use two kinds of spline: Hermite splines, which span
the interval [0, 1], and Schoenberg [1964] splines, which are piecewise local polynomials on the real
line. In modern literature, such as de Boor [2001] and Eilers and Marx [2021], references to B-splines
are synonymous with Schoenberg splines. Since this paper uses two different kinds of spline, we use
the term Schoenberg spline, rather than B-spline, to distinguish from Hermite splines.

Past mortality modelling using splines in calendar time, such as Currie et al. [2006] and Eilers
et al. [2008], uses stratified grouped counts. In contrast, we use individual records in a survival model
so that we can include covariates like gender, pension size and other factors typically available to
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actuaries. We use Hermite splines to model age- and income-related mortality and we use Schoenberg
[1964] splines to model mortality in time. Here we compress the knot spacing for splines in time to
half a year (or less) to model sharp swings in mortality.

The plan of the rest of this paper is as follows: Section 2 presents important features of covid-19
mortality in the U.K. and the resulting need for continuous-time methods in place of annual qx rates;
Section 3 describes the data set used in the paper; Section 4 describes the use of Hermite splines for
modelling mortality by age, while Section 5 describes how to also use Hermite splines for modelling
mortality by annuity amount; Section 6 recaps the application of Schoenberg splines for modelling
mortality levels over time. Section 7 considers the ability of the method to identify seasonal variation,
while Section 8 looks at the additional requirements for modelling the covid-19 mortality shocks in the
UK. Section 9 looks at further insights that can be derived, such as portfolio-specific improvement
rates. Section 10 considers the use of the methodology to allow for the impact of occurred-but-
not-reported (OBNR) deaths. Section 11 considers the conditions under which Schoenberg [1964]
splines may — and may not — be used for mortality patterns by age. Section 12 discusses the
use and limitations of information criteria, and the role of actuarial judgement in selecting models;
Section 13 concludes.

2 Covid-19 and other mortality shocks
Covid-19 is a new viral disease [The Novel Coronavirus Pneumonia Emergency Response Epidemiol-
ogy Team, 2020] whose arrival in the UK in 2020 caused deaths to surge to levels not seen since the
global influenza pandemic of 1918–1920 [Spreeuwenberg et al., 2018]. Figure 1 shows that England
& Wales had had sharply higher numbers of deaths in 1918 and 2020 compared to preceding years.

Figure 1: Numbers of deaths in England & Wales (2020 count is provisional). Source: ONS.
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In many places the 1918–1920 influenza pandemic appeared as a series of three spikes in mortality,
as shown in Figure 2 for Scotland, where the second and third spikes were the most severe.

As with influenza in 1918–1920, a key feature of Covid-19 mortality in many countries is that it
too takes the form of relatively sharp peaks. At the time of writing there have been two such peaks
in the UK, as shown in Figure 3. These peaks form and subside over a period of weeks or months,
and an annualised approach to mortality will under-state such mortality surges. For this reason, it is
important to use continuous-time methods like the mortality hazard, µx, rather than annual qx-style
rates.
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Figure 2: Weekly deaths in Scotland in 1918–1919 as percentage of 1913–1917 average. Source: Crau-
furd Dunlop and Watt [1915, 1916a,b, 1918, 1919, 1920a,b].
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Figure 3: Daily deaths in UK where the death certificate mentions covid-19 as one of the causes. Note that
the first lockdown legally commenced in England on 26th March 2020 [Hancock, 2020]. Source: ONS [2021].
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Covid-19 made its presence felt in the mortality of annuity portfolios and pension schemes in
many countries; Richards [2021] demonstrated this for annuity portfolios in France, the UK and the
USA. Covid-19 therefore creates a problem for actuaries analysing experience data to set bases: the
extra mortality of 2020–2021 risks either under-reserving (in the case of liabilities already on the
balance sheet) or under-pricing (in the case of insurers writing bulk annuities and longevity swaps).
Unfortunately, portfolio administrators seldom record the cause of death, so data like Figure 3 are
typically unavailable. Excluding periods of covid-affected data is also an unsatisfactory approach —
pension schemes looking to transact bulk annuities or longevity swaps may only have experience data
for the most recent 3–5 years, and discarding one or more of those years’ data is an unaffordable
luxury for a pricing actuary. Actuaries therefore require a methodology that works with all-cause
mortality data, but which flexibly tracks mortality levels over time to allow for covid-19 spikes. This
way all available experience data can be used, and the actuary can then exercise judgement as to
what point in time is most representative for calibrating a mortality basis.
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3 Data description
The data set used in this paper comprises individual records from a mature annuity portfolio of a
UK insurer. At the end of June 2021 a direct extract was made from the administration systems, as
recommended by Macdonald et al. [2018, Section 2.2] to get the most up-to-date data. Policy records
were validated using the checks described in Macdonald et al. [2018, Sections 2.3 and 2.4].

Insurer annuity portfolios often contain two or more policies per person, and so deduplication is
required for the independence assumption that underpins statistical modelling; see Macdonald et al.
[2018, Secton 2.5] for discussion of various approaches to deduplication. As is common for UK annuity
portfolios, there are many such duplicates — of 351,947 records passing validation, 124,420 records
were found to be someone’s second or third annuity, and there were three people with 29 annuities
each. The tendency to have multiple annuities is correlated with wealth and socio-economic status,
so deduplication is an essential step in building a statistical model for actuarial purposes. There
were 729 annuities where the annuitant was marked alive on one annuity and dead on another; these
annuities were excluded from the data for modelling.

The data set used in this paper is an updated extract of the UK3 data set in Richards [2021]. In
this paper we will continue to refer to it as UK3 for continuity.

4 Hermite splines for mortality by age
A basis of Hermite splines in one dimension [Kreyszig, 1999, p868] is a collection of four cubic
polynomial functions, as shown in Figure 4. A basis of cubic Hermite splines will produce the same
fitted curve as a basis of cubic Bézier curves or Bernstein polynomials of degree 3, albeit with different
coefficients.

Figure 4: Four Hermite basis splines for u ∈ [0, 1]. Note that h00(u) + h01(u) = 1.
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Richards [2020b] proposed using Hermite splines for modelling mortality by mapping an age
range [x0, x1] onto [0, 1] and forming the log hazard as a linear combination of the spline functions
in Figure 4. The model for the mortality hazard at age x, µx, is given in equation (1):

log µx = αh00(u) + ωh01(u) + m0h10(u) + m1h11(u)

u = x − x0

x1 − x0

(1)

where the intermediate variable u maps age x ∈ [x0, x1] onto [0, 1] and α, ω, m0 and m1 are parameters
to be estimated. In practice the h11 spline is seldom needed for mortality work and so we often set
m1 = 0. Doing so forces the mortality hazard in equation (1) to be monotonic at advanced ages,
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a topic we will return to in Section 11. We can further set m0 = 0 for a simple two-parameter
alternative to the Gompertz [1825] model that is strictly monotonic at all ages, as per equation (2):

log µx = αh00(u) + ωh01(u) (2)

Actuarial survival data are typically left-truncated; see Macdonald et al. [2018, Section 1.9] for a
discussion of the differences between actuarial survival models and those in medical research, such as
described by Collett [2003]. To fit a survival model for n individual lifetimes we use the log-likelihood,
�, in equation (3):

� = −
n∑

i=1
Hxi

(ti) +
n∑

i=1
di log µxi+ti

Hxi
(ti) =

∫ ti

0
µxi+sds

(3)

where xi is the exact age when life i = 1, . . . , n enters observation, ti is the time in years that life i
is observed and di is an indicator variable taking the value 1 if life i is dead at age xi + ti and zero
otherwise; Hxi

(ti) is the integrated hazard function. The log-likelihood in equation (3) is maximised
to find the MLEs of the parameters underlying µx; see Appendix A for the technical details of
implementation.

Figure 5(a) shows the simplified Hermite-spline model of equation (2) fitted to the UK3 data set.
Figure 5(b) shows the deviance residuals [McCullagh and Nelder, 1989, p39], indicating that Hermite
splines are an effective approach to modelling post-retirement mortality, especially where the linear
assumption of Gompertz [1825] does not hold.

Figure 5: (a) Crude mortality hazard (◦) for UK3 data set with fitted curve (−) from equation (2). (b)
Deviance residuals (•) from fit, which are broadly consistent with random N(0,1) i.i.d. variates apart from
two negative residuals below -3. Ages 55–105, 2015–2020.
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(b) Deviance residuals
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log µxi
= αih00(u) + ωih01(u)

αi = α0 + αfemalezi,female

ωi = ω0 + ωfemalezi,female

(4)

Figure 5 shows that equation (2) does an acceptable
job of explaining mortality variation by age. We therefore
extend equation (2) to include gender as a risk factor as
shown in equation (4), where zi,female is an indicator vari-
able taking the value 1 if the annuitant is female and zero if
male. α0, αfemale, ω0 and ωfemale are parameters estimated by maximum likelihood using equation (3).

5 Hermite splines for mortality by annuity amount
Figure 6: Deviance residuals by size-band for the
model specified by equation (4), i.e. after ac-
counting for variation by age and gender. Each
of the fifty size-bands contains around 2% of the
lives in the UK3 portfolio. The dashed lines show
the 95% confidence limits for N(0,1) variates.
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Figure 5 shows that even just using two of the Her-
mite basis splines works well when fitting a mortality
curve by age. This is because mortality rates tend
to gradually and monotonically increase with age af-
ter retirement. Figure 6 shows the deviance residuals
by size-band, which suggest a more complicated rela-
tionship between annuity level and mortality. How-
ever, the lower-than-expected mortality for the small-
est size-bands is actuarially irrelevant: the five size-
bands covering the decile of lives with the smallest
annuities account for less than 0.5% of total annuity
payments. We are therefore only interested in the gen-
eral downward trend in mortality with increasing an-
nuity amount, and especially the sharply lower mor-
tality of those receiving the very largest annuities. As
with age, we can again consider mortality by annu-
ity amount to be monotonic without material loss of
actuarial applicability.

Figure 7: Histograms of annuity amounts. The left panel shows the untransformed amounts, ai, displaying
extreme kurtosis. The right panel shows the amounts transformed by aie

−8.58082/(1 + aie
−8.58082), showing

a marked reduction in kurtosis. The value of λ̂0 = −8.58082 comes from the model in Table 1, where it was
estimated with reference to the mortality characteristics of the UK3 portfolio.
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We adopt a two-part approach: (i) a monotonic transform of the annuity amount onto the interval
[0, 1], and (ii) modelling mortality by the transformed amount. For the first step we transform the
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annuity amount, a ≥ 0 onto the interval [0, 1] so that we can use Hermite splines in the second step.
We use a parameterised transform function, τ(a, λ0), defined in equation (5):

τ(a, λ0) = aeλ0

1 + aeλ0
(5)

The operation of the transform fuction in equation (5) is demonstrated in Figure 7, where the
parameter λ0 allows the transform function to adapt simultaneously to the kurtosis of the portfolio
and the mortality effect of annuity amount.

The transformation in the right panel of Figure 7 leads to a deliberately unequal distribution of
lives and deaths, as shown in Figures 8(a) and (b). However, a useful actuarial consequence is that
the unequal distribution focuses on the financially signficant annuities: the interval [0.95, 1] contains
the 155 largest annuities with 9.57% of total annuity amounts, whereas the similar-sized interval
[0, 0.05] has the 18,437 smallest annuities with just 0.96% of the total annuity amounts.

Figure 8: Lives, deaths and proportion of annuity amounts by transformed annuity amount.
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We treat a zero annuity amount as the baseline and use the single h01 Hermite spline to model
the change (reduction) of mortality with increasing annuity amount on the transformed scale. We
thus further extend the model in equation (4) to include a continuous allowance for annuity amount,
as in equation (6):

log µxi
= αih00(u) + ωih01(u)

αi = α0 + αfemalezi,female + ωamounth01(τ(ai, λ0))
ωi = ω0 + ωfemalezi,female

(6)

The parameter ωamount represents the maximum mortality reduction from a near-infinite annuity
income relative to zero income. In equation (6) τ is the logistic transform in equation (5), although
Richards [2020a] considers some other transform options.

The above approach to mortality varying by annuity amount means that the amounts effect can
be handled statistically without discrete size-bands. This avoids discretisation error and also means
that we can extrapolate mortality effects for annuity amounts above the upper limit in the calibrating
data set. This latter aspect is particularly useful when calibrating a pricing basis, since an insurer
may encounter pension sizes during quotation that are far above the largest pension amount in its own
experience data. Table 1 shows the parameter estimates for the UK3 portfolio; it is a parsimonious
model accounting for three age-varying risk factors with just p = 6 parameters for n = 116, 056 lives.
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The information criterion from Akaike [1987] is shown (AIC = −2� + 2p), along with the Bayesian
Information Criterion [Schwarz, 1978] (BIC = −2� + p log n). For further details of this continuous
approach to the amounts effect, see Richards [2020a]. Alternatively, see van Berkum et al. [2020] for
a different approach using thin-plate splines.

Table 1: Parameter estimates for UK3 portfolio, together with numbers of contributing lives and deaths.
The model is specified in equation (6). Ages 55–105, 1st January 2015 to 31st December 2020. AIC=187,693,
BIC=187,751.

Parameter Name Estimate Std. err. Z-value Lives Deaths
α0 Intercept -5.45242 0.03244 -168.08 116,056 25,081
αfemale Gender.F -0.60228 0.05370 -11.22 34,875 6,429
ωfemale Gender.F:Oldest -0.20897 0.03787 -5.52 34,875 6,429
ω0 Oldest -0.53007 0.02021 -26.23 116,056 25,081
ωamount AmountUltimate -0.66319 0.11206 -5.92 116,056 25,081
λ0 AmountTransformParameter -8.58082 0.27120 -31.64 116,056 25,081

Figure 9 shows the deviance residuals by transformed annuity amount before and after fitting
the continuous amounts factor. The overall fit of the model has improved, as measured by the AIC,
BIC and χ2 test statistic by size-band. However, we have made an important trade-off in quality of
fit: improved fit for the larger annuity amounts comes at the cost of a worsened fit for the smallest
annuity amounts. Actuarially we are comfortable with this, as Figure 8(c) shows that the worsened
fit accounts for just 0.96% of the annuity amounts, and is thus a tiny proportion of overall liabilities.
Table 2 shows the development of model fit from adding age, gender and annuity amount as mortality
risk factors.
Figure 9: Deviance residuals, {rm : m = 1, . . . , 20}, by transformed annuity amount. The deviance residuals
are calculated for twenty intervals each of length 0.05, which have very different numbers of lives and
deaths, as shown in Figure 8. Note that the grouping here was performed purely for the purpose of residual
calculation, and that the underlying mortality model by annuity amount is fully continuous. The dashed
lines show the 95% confidence limits for N(0,1) variates.
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Table 2: Information criteria (ICs) from stepwise inclusion of age, gender and annuity amount as risk factors.

Equation Parameter
Risk factors number count AIC BIC ∑

m r2
m

Age only (2) 2 188,413 188,433 60.7
Age and gender (4) 4 187,774 187,813 67.8
Age, gender and annuity amount (6) 6 187,693 187,751 45.0

Mortality levels tend to vary monotonically by age. They also can be approximated as such for
annuity amount, even if the fit for the very smallest annuities is not ideal. Thus, mortality by age
and annuity amount can both be modelled using Hermite splines once each continuous variable is
mapped onto the real interval [0, 1]. However, modelling mortality variation in calendar time is not
monotonic, for which we need another kind of spline.

6 Schoenberg splines for mortality levels over time
Figure 10: Mortality level in time for a mature US an-
nuity portfolio using a semi-parametric estimator. The
vertical dotted line indicates 1st April 2020. Source:
Richards [2021, Figure 3(c)].
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Mortality levels can fluctuate sharply over short
periods of time, as shown in Figure 10, where
seasonal variation is evident along with the
Covid-19 shock in April 2020. Unlike mortal-
ity by age and annuity amount, patterns of mor-
tality in time are not monotonic. We therefore
require a method with sufficient local flexibility
to reflect the rise and fall of mortality levels over
time. For this we use the splines of Schoenberg
[1964]. Schoenberg’s splines are based on poly-
nomials of degree bdeg spanning bdeg + 2 knot
points. The knot points are unique values on
the real line and in many applications they are
uniformly spaced. However, uniform knot spac-
ing is not mandatory [Kaishev et al., 2016] and
Section 8 will demonstrate an application of un-
equally spaced knots.

Outside of a spline’s starting and end knots
the spline takes the value zero, making it a purely local function. Figure 11 shows four Schoenberg
splines of varying degrees, and more detail on such splines can be found in de Boor [2001] and Eilers
and Marx [2021].

Schoenberg splines are not new in mortality modelling: Eilers et al. [2004] applied them to
modelling mortality trends in grouped counts. This is done by forming a basis of cubic Schoenberg
splines (B-splines) in calendar time, as shown in Figure 12.

We define Bj(y) as the jth basis spline evaluated at time y and define µx,y as the mortality hazard
at exact age x and calendar time y. We can then use a B-spline basis as in Figure 12 to form an
age-period model for µx,y as per equation (7):

log µx,y = log µx +
∑
j≥1

κ0,jBj(y) (7)
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Figure 11: Schoenberg [1964] splines of degree 0, 1, 2 and 3 with one-year spacing between knot points
(marked •). In this specimen example, each spline is zero before the knot at 2015 and zero above the knot
bdeg + 1 knots to the right. The area under each spline is 1.
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Figure 12: A basis of nine equally-spaced cubic B-splines spanning 1st January 2015 to end-2020, indexed
j = 0, 1, . . . , 8. Splines in solid black lie completely within the period, while splines in dashed grey are
edge splines that only partly lie in the period being spanned. Knot points are marked •. Note that at any
time-point y ∈ [2015, 2021], there are always four non-zero splines that sum to 1. This is not true outside
[2015, 2021], meaning the method cannot extrapolate outside the calibration interval.
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The parameter κ0,j corresponds to the jth B-spline, and summation is from j = 1 as the spline
j = 0 is absorbed into the baseline hazard. To estimate the κ0,j along with any other parameters,
we maximise the log-likelihood in equation (8):

� = −
n∑

i=1
Hxi,yi

(ti) +
n∑

i=1
di log µxi+ti,yi+ti

Hxi,yi
(ti) =

∫ ti

0
µxi+s,yi+sds

(8)

where life i enters observation at exact age xi at exact year yi, and is observed for exactly ti years;
Hxi,yi

(ti) is the integrated hazard that now depends on both age at entry and year of entry. Some
example estimates of κ0,j are given in Table 3, which are then applied to the Bj in Figure 13 to show
the local flexibility. Finally, the various κ̂0,jBj products are summed in Figure 14 to show how the
estimated mortality level varies over time.

Note that absorbing κ0,0 into the baseline as in equation (7) is just one way of specifying the
necessary identifiability constraint, in this case κ0,0 = 0. That a constraint is required comes from
the identity in equation (9):
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Table 3: Estimates of κ0,j for j = 1, 2, . . . , 8 for UK3 portfolio, ages 55–105, 2015 to end-2020. κ0,0 = 0 by
construction because it is absorbed into the baseline hazard.

j 1 2 3 4 5 6 7 8
κ̂0,j -4.30805 -3.73912 -3.91987 -3.69781 -4.0887 -3.76673 -3.98538 -4.23435

Figure 13: κ̂0,jBj(y) using the nine basis splines in Figure 12 and the estimates in Table 3. Knot points are
marked •.
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log µx,y = α0h00(u) + ω0h01(u) +
∑
j≥0

(κ0,j − c)Bj(y)

= α0h00(u) + ω0h01(u) − c +
∑
j≥0

κ0,jBj(y), as
∑
j≥0

cBj(y) = c, ∀c ∈ R

= (α0 − c)h00(u) + (ω0 − c)h01(u) +
∑
j≥0

κ0,jBj(y), as h00(u) + h01(u) = 1

(9)

Without an identifiability constraint there is an infinite choice of real-valued c that can be de-
ducted from each κ0,j and added to α0 and ω0 in equations (1) or (2) and still yield the same fit. As
a consequence, the vertical scale in Figure 14(a) is somewhat arbitrary, and depends in large part
on the mortality experience covered by the right-hand part of spline B0 (see for example the spline
j = 0 in Figure 12 relative to the period from 1st January 2015).

We can use equation (9) to normalise the Schoenberg spline function to take the value zero at a
particular point in calendar time. This is useful if we regard that point in time as having a meaning
and we want to compare subsequent mortality levels (as is done in Figure 17, for example). For
example, 1st October 2019 (2019.75 decimalised) represents the last mid-point between a summer
trough and a winter peak before the covid-19 pandemic, and so might be regarded as the most recent
suitable timepoint unaffected by seasonal swings, pandemic shocks and unreported deaths. If we
define c2019.75 = ∑

j≥1 κ̂0,jBj(2019.75) we can then deduct this value from each κ̂0,j and normalise
the Schoenberg spline function without distorting the model fit as long as we also add c2019.75 to the
estimates α̂0 and ω̂0 (c2019.75 of course needs to be recalculated whenever the knot points in the spline
basis change). Figure 14(b) shows the resulting normalised Schoenberg spline.
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Figure 14: Schoenberg time-spline function spanning 1st January 2015 to end-2020 using the basis splines
in Figure 12 and the κ̂0,j in Table 3. Panel (a) shows the unadjusted spline function, while panel (b) shows
the function normalised at zero at 2019.75, the last mid-point between a summer trough and winter peak
before the covid-19 pandemic. Note that summation in panel (b) is from j = 0 because the coefficient of B0
is no longer zero.
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7 Modelling seasonal variation and covid-19 shocks
Mortality has long been known to have a major seasonal component; Rau [2007, Chapter 2] gives
a comprehensive introduction, covering both historical and modern aspects. Seasonal variation is
also pronounced in pensioner mortality, as demonstrated by Richards et al. [2020] with a recurring
annual cosine term. Such an approach estimates an average seasonal effect within each year, with
peak mortality in winter and low mortality in summer. However, this approach cannot account for
years with heavier-than-average winter mortality, nor will it account for slight shifts in the timing of
the winter peak.

We can address these issues by increasing the number of knots per year. This increases the number
of splines needed to span 2015–2020, with the resulting mortality level shown in Figure 15 for two,
four and ten knots per year.

Figure 15:
∑
j≥0

(κ̂0,j − c2019.75)Bj(y) for y spanning 1st January 2015 to end-2020 with equally-spaced knots.
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Figure 15(a) shows that two knots per year does a good job of picking up the seasonal variation
with the winter peaks around January of each year 2015–2019. The exception is 2020, where the
expected winter peak in January has merged with the covid-19 mortality spike of April and May 2020,
resulting in an aggregate peak shifted more towards the time of the first covid-19 shock. Another
feature of Figure 15(a) is the deep trough leading up to the end of 2020; this could be either a real
feature of the data, say due to the covid-19 mortality being partly due to brought-forward deaths,
or else an artefact from the B-spline basis having insufficient flexibility to cope with the short-term
intensity of the two covid-19 shocks in Figure 3. To resolve this, we can increase the knot density
further, as in Figure 15(b) and (c), but we face a difficult balancing act — increasing the knot density
allows the nature of the covid-19 spike to come through, but at the expense of weakening the signal
at other times.

Table 4: Information criteria (ICs) for various
knot densities with equal spacing. UK3 portfolio
for 1st January 2015 to end-2020. ICs and pa-
rameter counts can be compared with Table 2 as
the underlying data are identical.

Knots Parameter
per year count AIC BIC

1 14 187,594 187,729
2 20 187,412 187,605
4 32 187,324 187,634

10 68 187,244 187,901

Table 4 summarises the model fits using various
equally spaced knot densities. According to the AIC,
the model with ten knot points per year is the best
fit, which is rather contradicted by the fluctuations in
Figure 15(c). In contrast, the BIC indicates that two
knot points per year is the best fit. The conflicting
messages are likely due to the large number of pa-
rameters not being properly penalised in the AIC. In
mainstream statistical work a small-sample correction
to the AIC is often used because of this [Macdonald
et al., 2018, page 98]. However, in actuarial work the
sample size is typically not the problem due to there
being tens of thousands of data points (n = 116, 056
for the UK3 portfolio here). Rather, the issue is a large number of parameters for a given risk factor
— with four or more knot points per year, many of the κ0,j parameters prior to the mortality shock
are not explaining enough variation to justify their inclusion. (Ye [1998, p120] notes that “flexibility
often leads to substantial overfitting”.) A possible explanation for the failure of the AIC here is
given by Owen [1991, pp102–103], albeit in the context of a different model: where a statistically
significant parameter is being estimated, the estimation costs one degree of freedom; however, if the
parameter is statistically insignificant, the estimation costs more than one degree of freedom. Thus,
where unnecessary spline parameters are introduced, the standard definition of the AIC may fail to
properly penalise this. We will consider this drawback of the AIC again in Sections 11 and 12.

8 Increasing the knot density around shock times
Figure 15(c) shows that increasing the density of the knot points allows the covid-19 mortality shock
to be clearly identified in terms of height and timing. However, the development from Figure 15(a)
to (c) also suggests the introduction of random variation for the non-covid period. It is undesirable
to add knot points where flexibility is not required, so we address this by providing extra knots only
where they are needed. One approach is to use half-yearly-spaced knots for all years, but to add
extra knots around the time of the first covid-19 spike in April and May 2020, as shown in Figure 16.
We justify this from our a priori knowledge of the population covid-19 mortality in Figure 3.

Figure 17 shows the resulting mortality levels in time, with the expected seasonal fluctuation and
the first covid-19 spike around April 2020. The mixed approach with two knots per year for pre-covid
years and additional knots for the pandemic shock works well in capturing the salient features in
time. Figure 17(b) further shows the usefulness of normalising the Schoenberg splines at zero at a
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Figure 16: Part of a basis of nineteen variably-spaced cubic B-splines spanning 1st January 2015 to end-
2020, indexed j = 0, 1, . . . , 18 (only splines j = 10, . . . , 18 are actually shown). Splines in solid black lie
completely within the period, while splines in dashed grey are edge splines that only partly lie in the period
being spanned. Knot points are marked •.
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Figure 17: Schoenberg time-spline function for y spanning 1st January 2015 to end-2020 using the spline
basis depicted in Figure 16. Panel (a) shows the addition to log(mortality), while panel (b) shows the
multiplier of the mortality hazard.
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point in time — when converted to the hazard scale the multiplier is 1 at the reference point (2019.75
in this case) and we can see that the peak of the covid-19 spike is nearly double the reference level
of mortality. Following the shock in April 2020 there is also an unusually deep summer trough in
2020, which could be a result of “harvesting” due to brought-forward deaths of the frail. Figure 17(b)
also shows that the pre-pandemic seasonal trough-to-peak variation varies between around 15–30%,
which is consistent with the results in Richards et al. [2020, Table 2] for a variety of international
annuity and pension portfolios.

The BIC for the model behind Figure 17 is 187,489, which is considerably lower than any of the
BICs in Table 4. This suggests that the basis of variably spaced knots in Figure 16 has provided
flexibility only where it is needed. The time signal is relatively strong: dropping the factors gender
and annuity amount from the model leaves Figure 17 largely unchanged, which justifies the “age plus
period” nature of equation (7). However, the BIC for the model behind Figure 17 does not take
into account the fact that the knots were selected with reference to data and judgement (specifically,
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a comparison of the plots in Figure 15 and the distribution of covid-19 deaths in Figure 3). The
question of defining and using information criteria is discussed further in Section 12.

There are at least two other alternative approaches that would be possible. The first is the
optimisation of the number and position of knots by an algorithm targeting a measure of fit; Kaishev
et al. [2016] propose a knot-addition algorithm and also give a comprehensive overview of related
knot-optimisation research. The second approach is to deliberately use too many knots and use a
tuning parameter to minimise the variability exhibited in Figure 15(c); Eilers and Marx [1996] give
details. However, both of these methods have huge computational cost when applied to actuarial data
sets, where the number of observations often numbers hundreds of thousands. For example, the UK3
data set in this paper has n = 116, 056 records and the model behind Figure 17 has 19 Schoenberg
splines, giving a knot-to-data ratio of around 1:6000. In contrast, the data set from Kimber et al.
[2009] reworked by Kaishev et al. [2016] involves just 1,151 observations and has 227 knots, giving a
knot-to-data ratio of 1:5. The model behind Figure 16 took 1.5 hours to fit using parallel processing
over 63 threads [Butenhof, 1997], so adding lots more splines — as per Eilers and Marx [1996] —
would result in much longer run-times. Similarly, the repeated refitting with new knots — as per
Kaishev et al. [2016] — would also be time-consuming when applied to actuarial data sets.

9 Estimating portfolio-specific improvements
An advantage of equation (7) is that it can be used to estimate the portfolio-specific mortality
improvement (PSMI). This can be estimated by selecting either two winter peaks or two summer
troughs at time points y1 < y2 and using equation (10):

PSMI =


1 − exp




∑
j≥1

κ0,j(Bj(y2) − Bj(y1))

y2 − y1





 × 100% (10)

Our preference is to use summer troughs, due to the tendency for “sharp peaks in winter and
relatively flat troughs in summer” [Marx et al., 2010], meaning that winter peaks can be more extreme
and variable. From Figure 17(a) the period 2015.5–2019.5 seems to be the most suitable period for
estimating the portfolio-specific improvement rate, as the trough in the summer of 2020 may be
unusually deep due to brought-forward deaths. With y1 = 2015.5 and y2 = 2019.5, equation (10)
gives PSMI =

[
1 − exp

(
−1.00971−(−0.96219)

2019.5−2015.5

)]
× 100% = 1.18% p.a. This is an age-independent

mortality-improvement rate, as equation (7) is an “age effect plus period effect” model.

Table 5: Annual improvement rates (PSMI) between sum-
mer troughs in Figure 17.

2016.5 2017.5 2018.5 2019.5 2020.5
2015.5 -2.8% -2.1% 0.1% 1.2% 2.4%
2016.5 -1.4% 1.5% 2.5% 3.6%
2017.5 4.3% 4.3% 5.2%
2018.5 4.4% 5.7%
2019.5 7.0%

Table 5 shows the improvement rates
for various combinations of summer troughs
in Figure 17. Of interest are the strong
improvement rates ending in summer 2020
(2020.5), indicating the depth of the mor-
tality dip following the first covid-19 shock
in April 2020. (This phenomenon is unre-
lated to late-reported deaths, which is the
subject of the next section.) However, it is
an open question what value such volatile
improvement rates have when summer troughs can be almost as variable as winter peaks.
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10 Occurred-but-not-reported deaths (OBNR)
Although the UK3 portfolio data includes experience to end-June 2021, we have so far only used the
experience to end-2020 to avoid any impact from delays in death reporting. Richards [2021, Figure
7] examined the reporting delays for the same portfolio and found minimal impact on mortality
experience quarter of a year or more before the extract date, so discarding the most recent half-
year of experience should be more than enough to eliminate OBNR effects. However, discarding
experience data is undesirable if it can be avoided, and Richards [2021] proposed a parametric model
for late-reported deaths as a means of using all available data without distorting the final results.

Figure 18: Schoenberg time-spline function for y spanning
1st January 2015 to end-June 2021 using the spline basis
depicted in Figure 16 and extended with more knots to cover
Q1 2021. The figure shows the time-based multiplier for
the mortality hazard. The identifiability constraint is that
at 1st October 2019 (2019.75 decimalised) the multiplier is
normalised at 1.
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However, the reduction in reported mor-
tality leading up to the extract date is
just another pattern in time, which means
that the Schoenberg spline function in equa-
tion (7) is also an alternative means of al-
lowing for late-reported deaths. We can
therefore extend the spline basis and in-
clude all available experience data, in-
cluding the period most affected by late-
reported deaths. The result is presented in
Figure 18, which shows not only a multi-
plicative factor falling to zero at the extract
date at end-June 2021, but also the sec-
ond Covid-19 spike of January 2021. Fig-
ure 3 suggests that the second covid-19
spike should be around the same height as
the first, and so it is possible that the lower
spike in January 2021 in Figure 18 is due to
some OBNR deaths. We could in theory use
the forecasting method of Richards [2021,
Section 7] to adjust for this, but a para-
metric OBNR model will not easily fit due
to the high correlation with the last spline
parameter.

11 Schoenberg splines for mortality by age
The demonstrable effectiveness of Schoenberg splines when applied to time-varying mortality raises
the question whether we should not also use them for mortality by age. This is not a new idea
— McCutcheon [1979] used cubic splines by age when graduating mortality tables, for example.
However, the approach of McCutcheon [1979] was designed for stratified grouped data, and not the
inclusion of additional covariates per life.

log µx = α0 +
∑
k≥1

α0,kBk(x) (11)
For application to a survival model for individual lives

we therefore use equation (11), where α0 is the baseline,
Bk(x) is the kth B-spline evaluated at exact age x and α0,k

is the corresponding spline parameter. As before, summa-
tion is from k = 1 because the spline beginning at k = 0 is absorbed into the baseline.

Figure 19 shows the AIC and BIC for various knot spacings for Bk(x). As with Table 4, the two
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information criteria give conflicting guidance on which model to pick: the AIC indicates that the
best knot spacing in age is four years, while the BIC suggests that the optimum knot spacing is 25
years or more.

Figure 19: AIC, BIC and number of spline parameters for UK3 mortality rates using model in equation (11)
and various equidistant knot spacings. Ages 55–105, 1st January 2015 to end-2020.
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Figure 20: Crude mortality hazards (◦) and fitted
rates (−) using equation (11) and a four-year knot
spacing, showing over-fitting. Source: UK3 data.
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One reason to reject the AIC-recommended
four-year knot spacing is shown in Figure 20. The
model is over-fitted at both the youngest and old-
est ages: we have no reason to believe that mortal-
ity rates decline at the oldest ages, and the single
death at age 55 is not grounds enough for the fitted
shape. This is then an advantage of the Hermite-
spline approach of equation (1), as it has fewer
parameters and less flexibility, thus only permit-
ting slow and stable changes with age. Alterna-
tively, a basis of widely spaced Schoenberg splines
will behave similarly. However, we note that the
Hermite-spline approach of equation (6) is better
suited to the modelling of post-retirement mortal-
ity differentials due to automatic convergence with
increasing age [Richards, 2020b, Section 3]. Figure 21: Graduated mortality rates for Australian

males, showing “accident hump” around age 20.
Source: Heligman and Pollard [1980, Figure 12].
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In Figure 20 we see that excessive flexibility
from closely spaced Schoenberg splines in age is
undesirable — the fit might be superficially bet-
ter quantitatively, but is poorer qualitatively when
one takes into account data quality and reasonable
prior expectations. However, there will be occa-
sions when the greater flexibility of closely spaced
Schoenberg splines is useful, such as where younger
ages are included. Figure 21 shows an example
of a non-monotonic pattern with age, for which
Hermite splines will be unsuitable and for which
greater flexibility is required.
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12 Information criteria and actuarial judgement
In this paper we have seen two instances where the AIC led to a qualitatively poorer choice of knot
spacing for Schoenberg splines for mortality: first for a time-varying function — Figure 15(a) — and
again for an age-varying function (Figure 20). In both cases the AIC led to an excessive number of
parameters and over-fitting. Using the small-sample correction for the AIC [Hurvich and Tsai, 1989]
would not have led to a different outcome due to the large number of observations [Macdonald et al.,
2018, Table 6.1].

AIC = −2� + 2df

BIC = −2� + df log n
(12)

The definitions of the AIC and BIC used in this paper are the
usual ones given in the titles of Figures 19(a) and (b). However,
it is worth noting that more rigorous definitions are given in
equation (12), where � is the log-likelihood from equation (3),
n is the number of lives and df is the number of degrees of freedom used. In equation (12) it is
common to use df = p, where p is the number of parameters; for a simple linear regression model the
two are synonymous. However, Owen [1991, p103] noted that it is possible for a non-linear model
to have df > p, while Ye [1998, p122] notes that even a linear smoother can have fewer degrees of
freedom than there are parameters (df < p). In the field of mortality modelling, Macdonald et al.
[2018, Section 11.6] give an example of a penalised GLM where the effective degrees of freedom are
df = 9.0 with p = 20 regression coefficients. Assuming df = p is a simplifying assumption only, and
actuaries should not automatically pick a model solely because of its low information criterion.

This problem of the AIC leading to over-fitting may be restricted to relatively large numbers of
parameters for a given continuous risk factor. However, relying only on the BIC as an alternative is
not a complete solution either for actuarial work. For example, there is a distinction between risk
factors that are statistically significant and those that are financially significant; Richards [2020b,
Section 9] gives several contrasting examples. In Figure 6 the large negative residuals for the lowest
and highest size-bands are of equal significance statistically, yet actuaries will tolerate a poorer fit
for smaller amounts if it means better explaining the mortality of those with the largest annuity
amounts. While the BIC might be the better information criterion, it cannot be the sole arbiter of
model selection for actuarial purposes.

Leaving aside the complexities of model selection, there is also the practical question of how to turn
a model into a mortality basis. In the bulk-annuity and longevity-swap markets, specialist valuation
software is required to handle the complexities of UK pensioner benefits. However, such valuation
systems are seldom capable of handling multi-factor models, and usually a table of mortality rates by
age and gender is all that can be accommodated. A useful conversion tool is the equivalent-reserve
method of Willets [1999], which expresses one mortality basis in terms of another via the medium of
the liabilities in question. For the sake of example, assume that we want to express current mortality
levels in terms of the equivalent percentages of some third-party table. We are interested in the
mortality rates appplying at a point in time, so we ignore future mortality improvements, as these
are usually a separate basis item. The approach of Willets [1999] is to solve equation (13) for males
and females separately:

∑
i

ai

∫ ∞

0
vt

tp
model
x dt =

∑
i

ai

∫ ∞

0
vt

tp
table
x dt (13)

where ai is the annuity amount for life i, vt is the net discount function to apply to a payment in t
years, tp

model
x is the survival probability according to the model and tp

table
x is the survival probability

according to the published table. We do not need to worry about the distorting effect of ignoring
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mortality improvements, as long as they are ignored on both sides of equation (13). In general,
tpx = exp

(
−

∫ t
0 µx+sds

)
, and we use the definition of the mortality hazard in equation (14):

µtable
x = fµS2PA

x (14)

where µS2PA
x is the mortality hazard according to the table S2PA [CMI Ltd, 2014], and f is the

percentage of that table to be solved for in equation (13). Figure 22 shows the results using the
modelled mortality levels applying at various points in time over 2019-2020, assuming — somewhat
unrealistically — that those mortality levels continue indefinitely, i.e. for the calculation using
mortality levels at outset time y the integrated hazard is Hx(t) =

∫ ∞
0 µx+s,y.

Figure 22: Percentages of S2PA implied by mortality
levels over 2019–2020. Liabilities for UK3 at 1st Jan-
uary 2021 equated as per equation (13) using a net
discount rate of 0% p.a. (vt = 1, ∀t).
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Figure 22 shows the extent of the challenge
for actuaries in setting a best-estimate mortal-
ity basis for pricing bulk annuities or longevity
swaps. Under normal circumstances one might
pick the most recent mid-point between a sum-
mer trough and a winter peak; 751

2% for males
and 703

4% for females in October 2020, say. As
it happens, mortality at this point in time was
largely unaffected by covid-19 (see Figure 3), but
the equivalent percentages for April and May
2020 show the discontinuities possible due to
pandemic mortality. The equivalent percent-
ages for January 2020 show an emerging second
discontinuity due to the second covid-19 shock
shown in Figures 3 and 18.

Of course, no actuary would use equivalent
percentages like those for April and May 2020 in
Figure 22. However, the importance of allowing
for the mortality shock can be seen from imagining what the results would be like without it: without
the flexibility of the Schoenberg splines in time, the shock points would be moved down and all the
other percentages in Figure 22 would be shifted up; any resulting basis would thus be imprudent for
pricing a bulk annuity or longevity swap. The value of the methodology lies in accommodating the
mortality spikes so that they cannot drive bias at other points in time.

13 Conclusions
For continuous variables where mortality varies either monotonically or with simple shape variation, a
basis of Hermite splines usually provides all the flexibility that is needed. Examples include mortality
by age and annuity amount. For actuarial purposes, quality of fit for the smallest annuity amounts
is less important than the fit for the largest amounts.

In contrast, continuous variables where mortality fluctuates a lot, or where fluctuations are sharp
and extreme, are better handled by a basis of local splines. Using cubic Schoenberg splines —
a.k.a. B-splines — we can model mortality levels in time for annuity portfolios and pension funds.
With two knot points per year we can identify seasonal variation in mortality, and we can esti-
mate portfolio-specific mortality improvements from the change in mortality levels between summer
troughs. Where the number of observations is large, we find that the Bayesian Information Criterion
(BIC) is materially better for selecting the number of knot points than the AIC.
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To handle mortality shocks like covid-19, we add additional knot points from our a priori knowl-
edge of the timing of mortality spikes in the population. This mixed approach of regular half-yearly
knots and hand-placed additional knots allows the salient mortality features to be identified, i.e. both
seasonal variation and mortality shocks. A benchmark time-point can be selected to use in setting
a basis, safe in the knowledge that the model’s other parameters are not unduly biased due to the
presence of shocks because their effects are explicitly modelled.

The flexibility of the local Schoenberg splines further allows the modelling of the impact of late-
reported deaths. This removes the need to discard the most recent experience data and thus permits
the use of all available data for analysis and basis-setting.
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Appendices
A Implementation
A general approach to fitting left-truncated survival models is presented in Richards [2020b, Appendix
B]. The starting point is the log-likelihood, �, defined in equation (8). The contribution of a single
life i to the log-likelihood is given in equation (15):

�i = −
[∫ ti

0
µxi+s,yi+sds

]
+ di log µxi+ti,yi+ti

(15)

For maximising the log-likelihood function we require the gradient with respect to each parameter,
and for estimating standard errors we require the second pure and cross derivatives for all parameters.
General formulae are given in Richards et al. [2020, Appendix A].

The nature of the mortality hazards in equations (1), (2), (4), (7) and (11) means that closed-form
expressions for the integrated hazard in equation (15) do not exist. For the results in this paper we
have used the Romberg method of numerical integration, but Clenshaw-Curtis integration is also an
option. Richards et al. [2020, Appendix A] discuss some practical tests for ensuring that numerical
integration has taken place sufficiently accurately. Due to the computationally intensive nature of
the calculations, we process work in parallel across 63 threads [Butenhof, 1997]. For the summation
of lots of potentially small contributions like equation (15) we use the floating-point error-correction
algorithm of Kahan [1965].

Where a material OBNR effect exists, as in Figure 18, the value of κ̂j can be large and negative
for the rightmost spline; in the model behind Figure 18, for example, κ̂j ∈ (−5, 4), ∀j ∈ {1, . . . , 22},
but κ̂23 = −66.5. This can lead to a large number of iterations where the algorithm for optimising
the log-likelihood places a limit on the size of the change in parameter estimates, e.g. the parscale
control parameter in R Core Team [2017, optim function] or the STPMX variable in Press et al. [2005,
dfpmin function]. To reduce the number of iterations, the limit on the step size between successive
parameters can be increased, or else an adaptive step size used when the number of iterations proves
large. In our implementation we double the maximum step size after each 50 iterations — this has
little impact on most models with parameters in the range (−20, +20), but adapts to cope with
models with extreme parameter values caused by OBNR.
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B Model parameters
There are two groups of model parameters to be set for the mortality models in this paper: (i)
configuration settings, whose values are decided in advance by the analyst, and (ii) parameters
whose values are estimated from the data.

B.1 Model settings decided by the analyst
Table 6 lists the configuration settings that need to be decided in advance by the analyst, i.e. they
are not estimated from the data. Where appropriate, the values used in the main body of the paper
are given.

Table 6: Configuration parameters.

Parameter Value Description and role
x0 50 Age below which log µx is unmodelled. See equation (1).
x1 110 Age above which log µx is unmodelled. See equation (1).

τ(a, λ0)
aeλ0

1 + aeλ0
Transform function mapping annuity amount a ≥ 0 onto [0, 1]. See
equation (6) and Richards [2020a] for other transforms. The value of
λ0 is estimated from the data.

bdeg 3 Order of Schoenberg splines used in equation (7).

Other analyst decisions include the identifiability constraint on the {κ0,j} parameters (we use
κ0,0 = 0) and the knot spacing.

B.2 Parameters estimated from the data
Table 7 sets out the parameters whose values are estimated from the data by maximising the log-
likelihood in equation (3) or (8).

Table 7: Overview of parameters.

Parameter Name Description and role of parameter
α0 Intercept log µx0 .
αfemale Gender.F Addition to α0 for females.
m0 AgeGradientYoungest Initial rate of change of log(mortality) to the right of x0.
m1 AgeGradientOldest Rate of change of log(mortality) approaching age x1

from below.
ω0 Oldest log µx1 , the logarithm of the limiting hazard above x1.
ωfemale Gender.F:Oldest Addition to ω for females.
ωamount AmountUltimate Maximum mortality reduction on a logarithmic scale

from having a near-infinite annuity amount; see equa-
tion (6).

λ0 AmountTransformParameter Parameter used in mapping annuity amount from [0, ∞)
to [0, 1]; see equation (6).

κ0,j TimeSpline.j Coefficient of time spline j. Splines are numbered from
zero, but the zero’th spline is absorbed into the baseline
hazard.
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