Longevitas client webinar

Estimation and valuation in Longevitas

Stephen J. Richards 26th January 2023

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

- 1. Motivation
- 2. Estimation and likelihood
- 3. Liability valuation
- 4. Valuation uncertainty
- 5. Conclusions

1 Motivation

Q1 What is the uncertainty over a mortality model?Q2 How does this feed into uncertainty over the liabilities?

2 Estimation and likelihood

- Specify a statistical model with parameter $\boldsymbol{\theta}$.
- Form the log-likelihood function, $\ell(\boldsymbol{\theta})$.
- Find $\hat{\boldsymbol{\theta}}$ which maximises $\ell(\boldsymbol{\theta})$.
- $\hat{\boldsymbol{\theta}}$ is the maximum-likelihood estimate (MLE) of unknown true value $\boldsymbol{\theta}^*$.

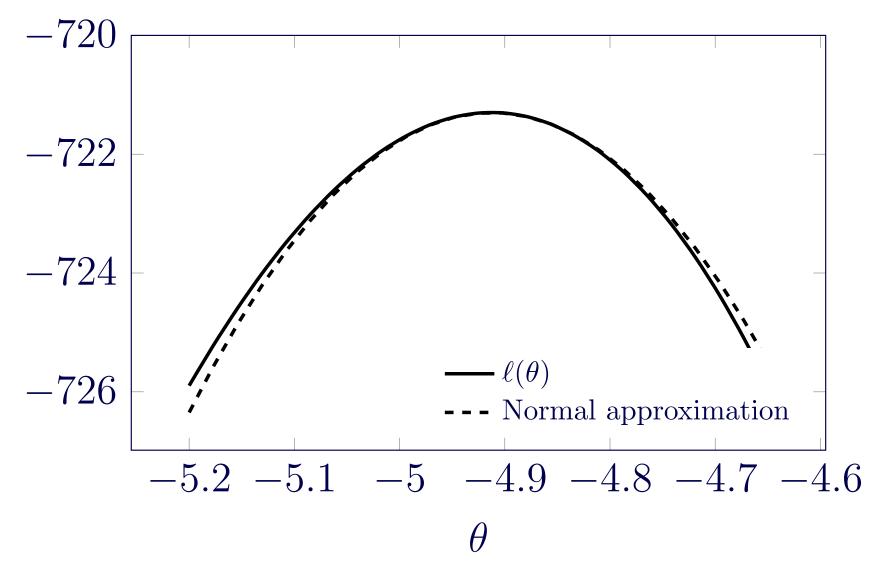
$\hat{\theta}$ is the Estimate column on the **Model** tab:

Model Overview

Model Parameters

Parameter	Estimate	? Standard error	Z-value	? Pr(> z)	?Sig.	Lives	Oecrements
AgeGradientYoungest	-4.28717	0.549765	-7.8	0	***	84389	19435
Gender.F	-0.95287	0.041431	-23	0	***	51064	10690
Gender.F:Oldest	-0.159249	0.032658	-4.88	0	***	51064	10690
Intercept	-3.97482	0.10836	-36.68	0	***	84389	19435
Oldest	-0.769237	0.033451	-23	0	***	84389	19435
PensionSize.2	-0.171969	0.035264	-4.88	0	***	20256	4662
PensionSize.3	-0.899687	0.056532	-15.91	0	***	10116	1502

\$


2 Likelihoods in Longevitas

Profile log-likelihoods are in the **Parameters** tab:

► Model ← Parameters ← Char	t Curves 🖾 C	ovariance 🗐 Data				
Cender.F Partial log-likelihood Spline chart Go						
Partial log-likelihood for Gender.F						
Gender.F	Stimate	-0.95287				
www.longevitas.co.uk	Parameter type	This parameter is a main effect and does not vary by age, duration or time.				
	Standard error	0.0414				
	? Z-value	-23				
	p-value	0				
	Significance	***				
	Coefficient of variation	-4.35%				
	[?] Exposure	344110				
\\	2 Decrements	10690				
	? Lives	51064				

Source: Richards [2016, Figure 1].

www.longevitas.co.uk

2 Maximum likelihood theorem longevitas

- $\hat{\boldsymbol{\theta}}$ has multivariate normal distribution (MVN)[†].
- This holds irrespective of the model structure. *θ̂* ~ MVN(*θ*^{*}, Σ^{*}).
- θ^* and Σ^* unknown, so use $\hat{\theta}$ and $\hat{\Sigma}$.
- $\hat{\theta}$ and $\hat{\Sigma}$ both estimated from log-likelihood.

^{\dagger} Cox and Hinkley [1996, Chapter 9(iii)].

$\hat{\Sigma}$ is the covariance matrix on the **Covariances** tab:

	lel 🔍 🔍 Paran	neters Art Chart	Curves	Covariance	Data			
✗ Mod	el Overview							
Corr	elations							
0								
Cova	ariances							*
		AgeGradientYoungest	Gender.F	Gender.F:Oldest	Intercept	Oldest	PensionSize.2	PensionSize.3
AgeGr	adientYoungest	0.302242	-0.00239569	0.00326321	-0.0568288	-0.011784	0.000487892	0.00209703
Gende	r.F	-0.00239569	0.00171656	-0.000881487	-0.000492527	0.000594854	0.000260095	0.000405566

AgeGradientYoungest	0.302242	-0.00239569	0.00326321	-0.0568288	-0.011784	0.000487892	0.00209703
Gender.F	-0.00239569	0.00171656	-0.000881487	-0.000492527	0.000594854	0.000260095	0.000405566
Gender.F:Oldest	0.00326321	-0.000881487	0.00106656	-0.000105426	-0.000786624	-3.19636e-05	2.63637e-07
Intercept	-0.0568288	-0.000492527	-0.000105426	0.0117419	0.00170574	-0.000603609	-0.000990392
Oldest	-0.011784	0.000594854	-0.000786624	0.00170574	0.00111897	2.20406e-05	-5.63628e-05
PensionSize.2	0.000487892	0.000260095	-3.19636e-05	-0.000603609	2.20406e-05	0.00124358	0.000448612
PensionSize.3	0.00209703	0.000405566	2.63637e-07	-0.000990392	-5.63628e-05	0.000448612	0.00319584

- Covariance of variable with itself is its variance.
- Variance of Gender.F is 0.00171656.
- Standard error of Gender.F is $\sqrt{0.00171656} = 0.041431$

Standard errors in Longevitas:

Model Overview

Model Parameters

Parameter	Estimate	Standard error	Z -value	? Pr(> z)	? Sig.	Lives	Decrements
AgeGradientYoungest	-4.28717	0.549765	-7.8	0	***	84389	19435
Gender.F	-0.95287	0.041431	-23	0	***	51064	10690
Gender.F:Oldest	-0.159249	0.032658	-4.88	0	***	51064	10690
Intercept	-3.97482	0.10836	-36.68	0	***	84389	19435
Oldest	-0.769237	0.033451	-23	0	***	84389	19435
PensionSize.2	-0.171969	0.035264	-4.88	0	***	20256	4662
PensionSize.3	-0.899687	0.056532	-15.91	0	***	10116	1502

☆

3 Liability valuation

3 Valuation using $\hat{\theta}$

$Enable \ valuation \ under \ Settings {\rightarrow} Configuration:$

Application Ceduplication Modellin	g 🔀 Rating 🛛 🗮 Projections
Calculation Core	
Model Analysis Defaults	
Perform Bootstrap Analysis	No
Bootstrap Sample Size	10 thousand V
Bootstrap Simulation Count	1 000 v
Bootstrap Inherit Sizebands	Yes v
Run-off Simulation Count	No run-off simulations
Mis-estimation VaR Horizon	No VaR 🗸
Mis-estimation VaR Parameter Risk	Yes v
Mis-estimation VaR Idiosyncratic Risk	No v
Mis-estimation VaR Output	Yes v
Liability Valuation	Yes plus first-derivatives
Valuation Mortality Level	No
Ceographic Map Shows	Yes
Suppress Curves Tooltips Beyond	Yes plus first-derivatives

3 Valuation in **Model** tab

∑ Model C Para	meters	Chart Chart	urves	Covariance	🗐 Data		
Model Overview	Model Overview						
Model Parameters							
Valuation							
Valuation Setting	Value						
Liability Type	annuity						
Records Used	survivors only						
? Valuation Field	Amount						
Interest	0.00						
	Males	Females					
Lives	24580	40374					
Amounts At Outset	181486039.56	142874709.68					
Payment basis: continuous							
ℽ Payment basis: annual in arrears							
	. annuai in e						
Payment basis	: annual in a	advance					

3 Reserve estimate

Valuation

Valuation Setting	Value			
Liability Type	annuity			
Records Used	survivors only			
? Valuation Field	Amount			
Interest	0.00			
	Males Females			
? Lives	24580	40374		
Amounts At Outset	181486039.56	142874709.68		

Payment basis: continuous

	Males	Females
Time lived	323269.1	616150.8
Reserves	2668712705.97	2289494200.05
Standard error	17495191.25	9978918.47
Coeff. of variation	0.66%	0.44%

Serivatives

4 Valuation uncertainty

- $\hat{\theta}$ is uncertain.
- So reserve, $V(\hat{\theta})$, is also uncertain.
- Use delta method to approximate variance of reserve.

θ̂ is a random variable, i.e. *θ̂* ~ MVN(*θ̂*, *Σ̂*).
Reserve, V(*θ̂*), is a function of a random variable.
Var[V(*θ̂*)] ≈ *a^TΣ̂a*, where *a* = ∂V(*θ̂*)/∂*θ*|_{*θ*=*θ̂*}

4 \boldsymbol{a} in **Derivatives** section

Valuation Setting	Value			
Q Liability Type	annuity			
Records Used	survivors only			
Q Valuation Field	Amount			
Interest	0.00			
	Males Females			
Q Lives	24580	40374		
Amounts At Outset	181486039.56	142874709.68		

Payment basis: continuous

	Males	Females
? Time lived	323269.1	616150.8
Reserves	2668712705.97	2289494200.05
Standard error	17495191.25	9978918.47
Coeff. of variation	0.66%	0.44%

Serivatives

LONGEVITAS

\boldsymbol{a} for males, females and combined:

Derivatives

Below are the first partial derivatives of the liability values with respect to the various parameters, i.e. the sensitivities of the liability values to change in each parameter value. These are used in conjunction with the parameter covariance matrix to approximate the variances of the liability values using the delta method, and thus obtain the standard errors of the liability values shown in the table above.

With respect to:	Males	Females	Combined
AgeGradientYoungest	-112676207.83	-76925796.87	-189602004.70
Gender.F	0.00	-303831771.67	-303831771.67
Gender.F:Oldest	0.00	-583674667.03	-583674667.03
Intercept	-460200231.77	-303831771.67	-764032003.45
Oldest	-674637060.04	-583674667.03	-1258311727.07
PensionSize.2	-131775201.53	-114406787.98	-246181989.51
PensionSize.3	-274551385.60	-76420216.09	-350971601.70

☆

LONGEVITAS

4 Reserve standard error

Valuation

Valuation Setting	Value	
Liability Type	annuity	
Records Used	survivors only	
? Valuation Field	Amount	
2 Interest	0.00	
	Males	Females
Lives	24580	40374
Amounts At Outset	181486039.56	142874709.68

Payment basis: continuous

	Males	Females
? Time lived	323269.1	616150.8
Reserves	2668712705.97	2289494200.05
Standard error	17495191.25	9978918.47
Coeff. of variation	0.66%	0.44%

Derivatives

5 Conclusions

- Maximum-likelihood estimation produces $\hat{\theta}$ and $\hat{\Sigma}$.
- Estimate of reserves using $\hat{\theta}$.
- Estimate variance of reserves using delta method.
- Implicit assumption of normal distribution for reserve valuation.

- D. R. Cox and D. V. Hinkley. *Theoretical Statistics*. Chapman and Hall, 1996. ISBN 0-412-16160-5.
- S. J. Richards. Mis-estimation risk: measurement and impact. British Actuarial Journal, 21 (3):429–457, 2016. doi: 10.1017/S1357321716000040.

More on mis-estimation risk at • www.longevitas.co.uk/mis-estimation-risk

Longevitas is a registered trademark:

- in the UK (No. 2434941),
- in the USA (No. 3707314), and
- in the European Union (No. 5854518).

Longevitas client webinar

Mis-estimation for pricing

Stephen J. Richards 26th January 2023

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

- 1. Motivation
- 2. Recap
- 3. Reserve distribution
- 4. Delta method v. sampling
- 5. Conclusions

This presentation is about how to use the mis-estimation features in the Longevitas survival-modelling software.

For the theory and technical details, see .www.longevitas.co.uk/mis-estimation-risk

1 Motivation

What is the true distribution of reserve values in response to parameter uncertainty?

- *θ̂* is the maximum-likelihood estimate (MLE). *θ̂* has approximate MVN(*θ̂*, *Σ̂*) distribution.
- Reserve, $V(\hat{\theta})$, is thus also a random variable.
- Approximate variance of $V(\hat{\theta})$ using delta method.

However:

- Using delta method assumes that $V(\hat{\theta})$ is normally distributed.
- In practice $V(\hat{\theta})$ is not necessarily normally distributed.
- Want to know the true distribution of $V(\hat{\theta})$, especially if not symmetric.

Sampling approach from Richards [2016]:

- 1. Sample $\boldsymbol{\theta}_j$ from MVN $(\boldsymbol{\hat{\theta}}, \boldsymbol{\hat{\Sigma}})$.
- 2. Calculate $V(\boldsymbol{\theta}_j)$.
- 3. Repeat steps 1 and 2 for $j = 1, 2, \ldots, nsamp$.
- 4. Resulting set of nsamp values represents sample from true distribution of $V(\hat{\theta})$.

Ensure the value-at-risk option is switched off:

Application	Contraction	D Modelling	* Rating	D ← Projections		
Selection Calculation	on Core					
Model A	nalysis Defaults					\$
2 Porform P	ootstrap Analysis			No		
				No		~
🙁 Bootstrap	Sample Size			10 thousand		~
🙁 Bootstrap	Simulation Count			1000		~
🛛 🕄 Bootstrap	Inherit Sizebands			Yes		~
[Run-off Si	mulation Count			No run-off simulation	ons	~
2 Mis-estim	ation VaR Horizon			No VaR		~
[?] Mis-estim	ation VaR Parameter Ris	k		Yes		~
🛛 Mis-estim	ation VaR Idiosyncratic I	Risk		No		~
🛛 Mis-estim	ation VaR Output			Yes		~

Specify mis-estimation on first modelling screen:

Advanced Options			*						
Advanced Properties	Advanced Properties								
Produce rate tables?	Produce survival curves?	Generate R Integration File	Generate Kaplan-Meier Curves						
Yes V	No v	No 🗸	No v						
? Rate Table Maximum Duration	? Rate Table Start Year and Month	Rate Table Start Age	? Rate Table Projection						
None	2020 V January V	60 ~	No - Static V						
? Observation Weighting	Perform Bootstrap Analysis	Bootstrap Simulation Count	Bootstrap Sample Size						
Unweighted/lives based	No	1000 ¥	10 thousand V						
?Revalue Benefits	No	Exclude records with	Include Data Audit						
Don't revalue benefits V	Yes Yes including mis-estimation analysis	Don't exclude v	No data audit						

LONGEVITAS

Advanced Options			\$
Advanced Properties			
Produce rate tables?	Produce survival curves?	Generate R Integration File	? Generate Kaplan-Meier Curves
Yes v	No v	No 🗸	No v
Rate Table Maximum Duration	? Rate Table Start Year and Month	Rate Table Start Age	? Rate Table Projection
None	2020 V January V	60 🗸	No - Static V
Observation Weighting	Perform Bootstrap Analysis	Bootstrap Simulation Count	Bootstrap Sample Size
Unweighted/lives based	No v	1000 ~	10 thousand V
Revalue Benefits	No	Exclude records with	Include Data Audit
Don't revalue benefits	Yes Yes including mis-estimation analysis	Don't exclude	No data audit 🗸

LONGEVITAS

Mis-estimation and bootstrap results appear together:

Time	Name	Text
12:30:05	Model 79711	Survival(Hermite-II) - For mis-estimation presentation with 10000 simulations (AgeGradientYoungest, Gender, Oldest, PensionSize, Gender:Oldest)
12:41:11	Decrement: DEATH	Model Minput Mistrap Kate Residuals Bootstrap Bootstrap Estimate Pulse

4 Delta method v. sampling

Ask for delta method by enabling valuation derivatives under $\mathbf{Settings} \rightarrow \mathbf{Configuration}$:

Application	Leduplication	D Modelling	% Rating	□□Projections	
Calculation					
	n core				
Model Ana	lysis Defaults				3
2 Perform Boo	otstrap Analysis		ĺ	No	~
Bootstrap S				10 thousand	· · ·
🕐 Bootstrap S	imulation Count			1000	~
[Bootstrap In	herit Sizebands		(Yes	~
🛛 Run-off Sim	ulation Count			No run-off simulations	~
[Mis-estimati	on VaR Horizon			No VaR	~
[Mis-estimati	on VaR Parameter Risl	¢		Yes	~
[Mis-estimati	on VaR Idiosyncratic F	lisk	(No	~
[Mis-estimati	on VaR Output		(Yes	~
[] Liability Valu	uation		(Yes plus first-derivatives	~
2 Valuation Mo	ortality Level			No	
🕐 Geographic	Map Shows			Yes)
Suppress C	urves Tooltips Beyond		\rightarrow	Yes plus first-derivatives	

Results of delta method under continuous valuation:

Valuation

Valuation Setting	Value				
2 Liability Type	annuity				
Records Used	survivors only				
2 Valuation Field	Amount				
? Interest	0.00				
	Males	Females			
? Lives	24580	40374			
Amounts At Outset	181486039.56	142874709.68			

Payment basis: continuous

	Males	Females		
Time lived	323269.1	616150.8		
Reserves	2668712425.59	2289494139.52		
Standard error	17495188.42	9978917.02		
Coeff. of variation	0.66%	0.44%		

MalesFemalesReserve (\pounds m)2,6692,289Standard error (\pounds m)17.510.0

Use mis-estimation output file:

Time	Name	Text
12:30:05	Model 79711	Survival(Hermite-II) - For mis-estimation presentation with 10000 simulations (AgeGradientYoungest, Gender, Oldest, PensionSize, Gender:Oldest)
12:41:11	Decrement: DEATH	Model Input XML Rate Residuals Bootstrap Bootstrap Estimate Alls.

4 Sampling approach

Use mis-estimation output file:

	Е	G	Н	I.	J	К	L	М	N
1	Expected Present Value Males Continuous	ExpectedPresentValueFemalesContinuous	AgeGradientYoungest	Gender.F	Gender.F:Oldest	Intercept	Oldest	PensionSize.2	PensionSize.3
2	2651025876	2273760717	-4.265692	-0.938834	-0.15497	-4.013486	-0.736687	-0.209652	-0.840957
3	2661679737	2282490174	-4.272845	-0.928793	-0.158497	-3.967263	-0.778794	-0.184164	-0.863494
4	2669948989	2281460464	-4.112005	-0.884203	-0.181287	-4.027025	-0.772404	-0.137001	-0.897609
5	2659892578	2294741595	-4.960897	-1.045544	-0.129697	-3.794761	-0.772422	-0.126729	-0.907336
6	2682378094	2292899433	-4.646145	-0.945333	-0.175459	-3.9246	-0.735257	-0.15079	-0.980943
7	2651949887	2292317999	-4.774853	-0.937442	-0.196579	-3.887774	-0.734145	-0.138568	-0.886267
8	2670809057	2292162814	-4.370889	-0.973476	-0.143136	-3.962309	-0.771169	-0.208992	-0.871526
9	2674025403	2288312857	-4.430025	-0.951354	-0.139202	-3.977542	-0.77802	-0.159694	-0.840199
10	2705245813	2301477149	-4.189709	-0.940179	-0.144941	-3.94713	-0.815461	-0.236753	-0.973414
11	2678041018	2289727971	-4.117512	-0.968994	-0.139727	-3.972671	-0.804764	-0.148893	-0.930393
12	2682246468	2291790178	-4.272211	-0.945537	-0.166958	-3.971986	-0.75328	-0.220268	-0.976469
13	2652937560	2275476647	-5.161946	-0.905199	-0.199297	-3.852893	-0.684524	-0.127817	-0.915487
14	2701471438	2279742590	-3.362895	-0.997768	-0.074036	-4.155678	-0.834679	-0.194606	-0.922094
15	2654323606	2263164239	-4.947679	-0.950599	-0.132107	-3.811085	-0.746952	-0.190782	-0.89645
16	2691533412	2291896456	-4.47731	-0.996029	-0.109789	-3.908488	-0.800212	-0.205467	-0.923186
17	2689040769	2278902984	-3.078666	-0.928135	-0.121823	-4.224058	-0.833462	-0.160286	-0.898785
18	2665796369	2296425876	-4.773069	-0.960412	-0.178985	-3.905613	-0.726283	-0.185232	-0.9046
19	2686445796	2300776455	-4.303641	-1.000535	-0.132903	-3.95102	-0.797902	-0.16415	-0.930354
20	2641987821	2287310003	-3.723254	-0.922005	-0.218019	-4.098357	-0.734231	-0.149375	-0.922792
21	2675367554	2298341852	-3.559969	-0.984055	-0.160583	-4.118105	-0.786914	-0.142549	-0.953192
22	2674225077	2306171008	-4.371478	-0.965088	-0.176479	-3.950686	-0.769861	-0.191047	-0.914935
23	2673069282	2288977112	-4.870113	-0.962771	-0.145316	-3.871513	-0.761405	-0.147224	-0.880657
24	2652148254	2277901993	-4.39163	-0.886525	-0.191128	-4.005481	-0.72601	-0.192582	-0.840928

4 Sampling approach

MalesFemalesReserve (\pounds m)2,6692,290Standard error (\pounds m)17.49.9

Males Females Reserve 100.00% 99.99% Standard error 100.61% 99.80%

5 Conclusions

- In this particular case, the delta method was a highly accurate approximation.
- This may not be true of all models and data sets.
- Use either delta method or sampling mis-estimation to understand response of reserve estimate to parameter uncertainty.

S. J. Richards. Mis-estimation risk: measurement and impact. British Actuarial Journal, 21 (3):429–457, 2016. doi: 10.1017/S1357321716000040.

More on mis-estimation risk at • www.longevitas.co.uk/mis-estimation-risk

Longevitas is a registered trademark:

- in the UK (No. 2434941),
- in the USA (No. 3707314), and
- in the European Union (No. 5854518).

Longevitas client webinar

Mis-estimation: value-at-risk

Stephen J. Richards 26th January 2023

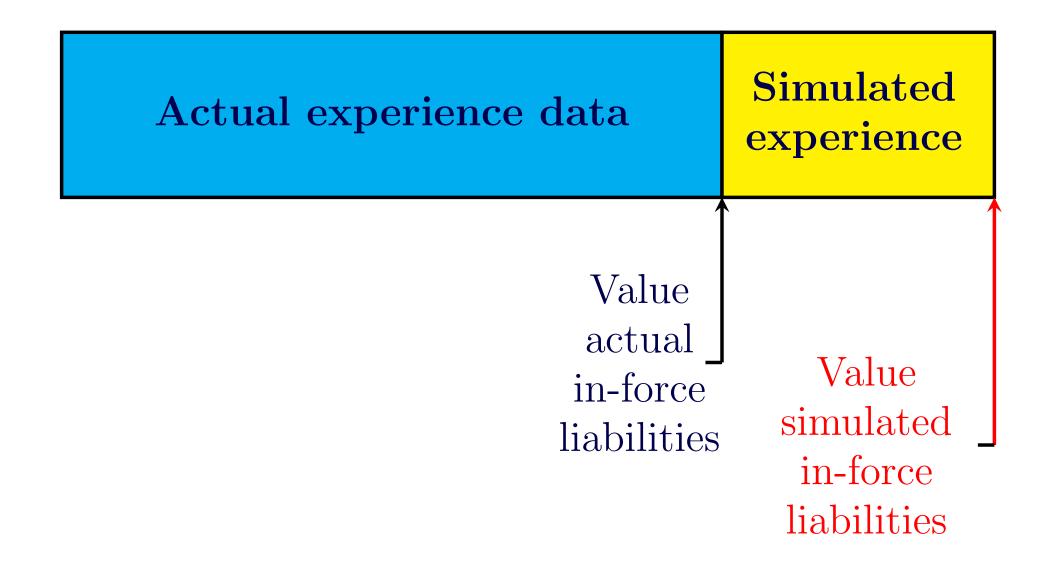
Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

- 1. Motivation
- 2. Pricing view v. value-at-risk
- 3. Simulation
- 4. Conclusions

This presentation is about how to use the mis-estimation features in the Longevitas survival-modelling software.

For the theory and technical details, see .www.longevitas.co.uk/mis-estimation-risk

1 Motivation



1 Mis-estimation: value-at-risk Congevitas

Q1 How sensitive is the mortality model to new data?
Q2 How sensitive is the reserve to model recalibration?
Q3 What capital is needed to cover recalibration risk?

2 Pricing view v. value-at-risk **Congevitas**

Q. Why value liabilities at end of simulation period?
A. To simultaneously measure mis-estimation risk and idiosyncratic risk; see Richards [2021, Table 9].

2 VaR mis-estimation

Switch on VaR mis-estimation by selecting horizon:

	· · ·			No VaR	^
		D Modelling		One year	
Application	Deduplication		X Rating	Two years	
				Three years	
Calculation	n Core			Four Years	
				Five years	
Model Ana	alysis Defaults			Six years	
2 Porform Por	atotran Analysia			Seven years	
	otstrap Analysis			Eight years	
🕐 Bootstrap S	ample Size			Nine years	
🙁 Bootstrap S	imulation Count			Ten years	þ
🛿 Bootstrap Ir	herit Sizebands			Fifteen years	
🛛 Run-off Sim	ulation Count			Twenty years	~)
🛛 🕄 Mis-estimati	ion VaR Horizon			No VaR	~
[] Mis-estimati	ion VaR Parameter Ris	k		Yes	~
<table-cell> Mis-estimati</table-cell>	on VaR Idiosyncratic	Risk		No	~
🙎 Mis-estimati	ion VaR Output			Yes	~
🙁 Liability Val	uation			Yes plus first-derivatives	~
2 Valuation M	ortality Level			Static as per rate-table start year	~
🛛 Geographic				All records in model	v
w.longevitas.co	.uk urves Tooltips Bevond	I		Alwavs display tooltips	~ 9/

Switch between actual in-force and simulated in-force:

Application Ceduplication Modellin	g Kating Projections	
Solution Core		
Model Analysis Defaults		*
Defense De statem Analysis		
Perform Bootstrap Analysis	No	~
🕄 Bootstrap Sample Size	10 thousand	~
Bootstrap Simulation Count	1000	~
Bootstrap Inherit Sizebands	Yes	~
Run-off Simulation Count	No run-off simulations	~
Mis-estimation VaR Horizon	No VaR	~
Mis-estimation VaR Parameter Risk	Yes	~
Mis-estimation VaR Idiosyncratic Risk	No	~
Mis-estimation VaR Output	Yes	~

Switch on output of simulated deaths and time lived:

Application	D Modelling	X Rating	□< Projections	
Selection Core				
Model Analysis Defaults				*
Perform Bootstrap Analysis			No	v
Bootstrap Sample Size			10 thousand	V
Bootstrap Simulation Count			1000	~
Bootstrap Inherit Sizebands			Yes	~
Run-off Simulation Count			No run-off simulations	~
Mis-estimation VaR Horizon			No VaR	~
Mis-estimation VaR Parameter Ris	k		Yes	~
Mis-estimation VaR Idiosyncratic F	Risk		No	~
Mis-estimation VaR Output			Yes	~

3 Simulation

θ̂ is the maximum-likelihood estimate (MLE). *θ̂* has approximate MVN(*θ̂*, *Σ̂*) distribution.

- Two options for simulating n-year experience:
 - 1. Without parameter risk: just use $\hat{\theta}$.
 - 2. With parameter risk: sample from $MVN(\hat{\theta}, \hat{\Sigma})$.

Switch VaR parameter risk on or off in configuration:

Application	D Modelling	* Rating	D ← Projections	
Selection Core				
Model Analysis Defaults				*
			(
Perform Bootstrap Analysis			No	~
Bootstrap Sample Size			10 thousand	~
Bootstrap Simulation Count			1000	~
Bootstrap Inherit Sizebands			Yes	~
Run-off Simulation Count			No run-off simulations	~
Mis-estimation VaR Horizon			No VaR	~
[2] Mis-estimation VaR Parameter Risk			Yes	~
Mis-estimation VaR Idiosyncratic Ri	sk		No	~
Mis-estimation VaR Output			Yes	~

4 Conclusions

PONGEVITAS

Options for liability estimation risk in Longevitas:

- 1. **Delta method**. For pricing block transactions. Assumes normal distribution for liability value, which might not always be true.
- Richards [2016]. For pricing block transactions. Makes no assumption about distribution of liability value.
- 3. Richards [2021]. Value-at-risk approach for one-year Solvency II reporting, ORSA etc.

- S. J. Richards. Mis-estimation risk: measurement and impact. *British Actuarial Journal*, 21 (3):429–457, 2016. doi: 10.1017/S1357321716000040.
- S. J. Richards. A value-at-risk approach to mis-estimation risk. *British Actuarial Journal*, page to appear, 2021. doi: 10.1017/S1357321721000131.

More on mis-estimation risk at \bullet www.longevitas.co.uk/mis-estimation-risk

Longevitas is a registered trademark:

- in the UK (No. 2434941),
- in the USA (No. 3707314), and
- in the European Union (No. 5854518).

