Longevitas client webinar

Robust mortality forecasts

Stephen J. Richards 14th February 2023

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

- 1. Motivation
- 2. Limits of judgement
- 3. Robust univariate forecasts
- 4. Robust multivariate forecasts
- 5. Conclusions

This presentation is about how to use features in the Projections Toolkit software.

For this and other materials on robust forecasting, see .www.longevitas.co.uk/robust-forecasting

1 Motivation

Using data to 2019

Congevitas

ARIMA forecast of time index in Lee-Carter model:

www.longevitas.co.uk

Using data to 2020

Congevitas

ARIMA forecast of time index in Lee-Carter model:

www.longevitas.co.uk

- Covid-19 mortality breaks forecasting models.
 How can we reductify actuarial forecasts?
 - How can we robustify actuarial forecasts?

- Easy when covid years are at end of data period.
- ✗ Tricky when covid years are in the middle of data period.
- X Subjective.

2 Limits of judgement

The limits of visual inspection **Congevitas**

"good data deserve inspection from a variety of perspectives" Lange [1998]

The limits of visual inspection **Congevitas**

M9 model [Cairns et al., 2015] fitted to data for males in England & Wales, ages 50–105, years 1971–2020.

Spotting outliers using plotting longevitas

- First differences in CBD time indices are supposed to be i.i.d. multivariate normal.
- Plots are useful for univariate and bivariate random walks.
- Trouble starts with trivariate random walks (M7 and M9), where viewing angle is important...

Spotting outliers using plotting longevitas

Depending on the type of plot, 2020 is either:

- An obvious outlier, or
- Not an outlier at all.

- Need an objective approach to outliers.
- \Rightarrow Identify outliers with statistical tests.
 - Need to remove bias and distortion.
- \Rightarrow Co-estimate outlier effects with other parameters.

2 Why estimate outlier effects? Tongevitas

- 1. Co-estimation of outlier effects removes bias in parameters in forecast model.
- 2. If the last year is affected, estimation of outlier effects allows calculation of a more sensible starting point for the forecast.

Source: M9 model fitted to data for males in England & Wales. www.longevitas.co.uk

3 Robust univariate forecasts **Congevitas**

- A univariate model has multiple parameter vectors, but only one represents a time index to forecast.
- Example from Lee and Carter [1992]:

$$\log \mu_{x,y} = \alpha_x + \beta_x \kappa_y$$

- $\hat{\alpha}_x$ and $\hat{\beta}_x$ are held constant in the forecast.
- An ARIMA model is fitted to the $\hat{\kappa}_y$ time index to forecast the trend.

Outlier

An observation that is further from the one-year-ahead forecast than is consistent with the noise variance.

To robustify an ARIMA model, Chen and Liu [1993]: 1. Proposed test statistics to identify outliers. 2. Proposed further test statistics to *classify* outliers.

IO Innovation outlierAO Additive outlierTC Temporary changeLS Level shift

A modest outlier that is nevertheless integrated into the process.

Example

A year with heavy winter mortality due to influenza, possibly with lighter mortality the following year.

Handling: leave alone.

A more extreme outlier that is not integrated into the process.

Example War or pandemic in a single year.

Handling: co-estimate the outlier effect to remove bias in other parameters.

Two or more consecutive outliers that are not integrated into the process.

Example

War or pandemic spread over more than one year.

Handling: co-estimate the outlier effects to remove bias in other parameters.

Permanent change in level of process.

Example

After German reunification in 1990, old-age mortality in East converged rapidly on levels in the West [Grigoriev et al., 2021].

Handling: review model or data period.

Note

An outlier can be detected anywhere, but its type cannot be determined if it occurs at the end of the series.

Five controls for robustification:

Congevitas

Two controls for univariate robustification:

Switch on Chen and Liu [1993] robustification:

Select critical value for univariate outlier detection:

3 Sensitivity to critical value

Females, E&W, Lee-Carter model, cval=3

Summary of estimated outlier effects in undifferenced series with critical value 3.

Year	Outlier type	Estimated outlier effect	t-value	
1973	AO	-0.01757	NaN)
1976	AO	0.014986	NaN	
1980	AO	-0.001498	NaN	
1984	AO	-0.017278	NaN	
1991	AO	0.029086	NaN	
1994	AO	-0.015967	NaN	m
1996	AO	-0.010621	NaN	Too man
1999	AO	-0.000274	NaN	outliers
2003	AO	0.025771	130.211535	outifiers
2007	AO	-0.002924	NaN	
2011	AO	-0.033055	NaN	
2014	AO	-0.040815	NaN	
2018	AO	0.016634	NaN	
2020	AO	0.073339	32.687304)

3 Sensitivity to critical value

Females, E&W, Lee-Carter model, cval=3.5

Projections

Projections are carried out by means of an ARIMA(0,1,3) time series applied to κ_y . Details of the ARIMA process are shown below. The variance of the noise process, σ^2 , is 0.000129.

Summary of ARIMA parameters for κ_y

Parameter	Estimate	Standard erro
ma1	-0.842428	0.146775
ma2	0.307704	0.182541
ma3	0.511356	0.133761
mean	-0.009136	0.001568

The ARIMA process is fitted using a Kalman filter (Harvey, 1996) via R's arima() function. The details of this filter are given in the model PDF report.

Robust estimation of the model for κ_{γ} is carried out using the approach of Chen & Liu (1993), which simultaneously estimates the model parameters alongside outliers.

Summary of estimated outlier effects in undifferenced series with critical value 3.5.

Year	Outlier type	Estimated outlier effect	t-value		
2020	AO	0.059706	4.960545	Sensible number of outliers	

www.longevitas.co.uk

4 Robust multivariate forecasts longevitas

A multivariate model has two or more time indices.Example from Cairns et al. [2006]:

$$\log \mu_{x,y} = \kappa_{0,y} + (x - \bar{x})\kappa_{1,y}$$

• $\hat{\kappa}_{0,y}$ and $\hat{\kappa}_{1,y}$ are forecast jointly as a bivariate random walk with drift.

Congevitas

Three controls for multivariate robustification:

4 Robust multivariate forecasts longevitas

Select Galeano et al. [2006] robustification:

PONGEVITAS

Select the alpha value for outlier detection:

Pongevitas

Choose to robustify differenced or undifferenced series:

Projecting κ_{0r} κ_1 and κ_2

Projections are carried out by means of a trivariate random walk for κ_0 , κ_1 and κ_2 with drift parameters given below.

Parameter	Estimate	Standard error	Noise error
K0	-0.05727	0.008902	0.062315
к1	0.00395	0.00049	0.003431
κ2	0.000131	0.000007	0.000048

The standard deviations of the noise process ("innovations"), and the correlation matrix between the drift terms are shown in the model PDF report.

Robust estimation of the model for κ_{γ} is carried out using the approach of Galeano, Peña & Tsay (2006), which simultaneously estimates the forecast model parameters alongside identification of outliers and their effects. Robustification is applied to the undifferenced series using a p-value of 1% as the threshold. Below is a table of the estimated outlier effects:

 Year
 Estimate of outlier effect

 2020
 (0.148798, -0.002931, 0.000184)

Projecting κ_{0r} κ_1 and κ_2

Projections are carried out by means of a trivariate random walk for κ_0 , κ_1 and κ_2 with drift parameters given below.

Parameter	Estimate	Standard error	Noise error
к ₀	-0.057557	0.008931	0.062514
к1	0.003875	0.000503	0.003523
к2	0.000135	0.000005	0.000036

The standard deviations of the noise process ("innovations"), and the correlation matrix between the drift terms are shown in the model PDF report.

Robust estimation of the model for κ_y is carried out using the approach of Galeano, Peña & Tsay (2006), which simultaneously estimates the forecast model parameters alongside identification of outliers and their effects. Robustification is applied to the differenced series using a p-value of 1% as the threshold. Below is a table of the estimated outlier effects:

Other approaches to identifying outliers in multivariate data, e.g. Hadi [1994].

5 Conclusions

- Covid-19 distorts mortality forecasting models.
 - Ignoring affected years only a temporary solution.
 - Need objective statistical tests for outliers.

- Co-estimation of outliers and parameters reduces bias in latter.
- Also permits calculation of better starting point for forecasts.

Co-estimate outlier effects and model parameters:

Univariate forecasting

- Lee-Carter, APC, APCI and Age-Period.
- Use approach of Chen and Liu [1993].

Multivariate forecasting

Cairns-Blake-Dowd family: M5, M6, M7 and M9.Use approach of Galeano et al. [2006].

- A. J. G. Cairns, D. Blake, and K. Dowd. A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. *Journal of Risk* and Insurance, 73:687–718, 2006. doi: 10.1111/j.1539-6975.2006.00195.x.
- A.J.G. Cairns, D. Blake, K. Dowd, and A. Kessler. Phantoms never die: Living with unreliable mortality data. *Journal of the Royal Statistical Society, Series* A, 2015. doi: 10.1111/rssa.12159.

- C. Chen and L-M. Liu. Joint estimation of model parameters and outlier effects in time series. *Journal* of the American Statistical Association, 88(421): 284–297, 1993.
- P. Galeano, D. Peña, and R. S. Tsay. Outlier detection in multivariate time series by projection pursuit. *Journal of the American Statistical Association*, 101 (474):654–669, 2006. doi: 10.1198/0162145000001131.

- P. Grigoriev, M. Pechholdová, M. Mühlichen, R. D. Scholz, and S. Klüsener. 30 Jahre Deutsche Einheit: Errungenschaften und verbliebene Unterschiede in der Mortalitätsentwicklung nach Alter und Todesursachen. Bundesgesundheitsblatt, pages 481–490, 2021. doi: 10.1007/s00103-021-03299-9.
- A. S. Hadi. A modification of a method for the detection of outliers in multivariate samples. Journal of the Royal Statistical Society, Series B (Methodological), 56(2):393–396, 1994. ISSN 00359246. URL
 - http://www.jstor.org/stable/2345910.

- K. Lange. Numerical Analysis for Statisticians. Springer, 1998. ISBN 0-387-94979-8.
- R. D. Lee and L. Carter. Modeling and forecasting US mortality. Journal of the American Statistical Association, 87:659-671, 1992. ISSN 01621459. URL http://www.jstor.org/stable/2290201.
- Coronavirus graphic \circledast from CDC

More on robust forecasting at • www.longevitas.co.uk/robust-forecasting

Longevitas is a registered trademark:

- in the UK (No. 2434941),
- in the USA (No. 3707314), and
- in the European Union (No. 5854518).

