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Abstract

Tang et al. [2022] propose a new class of models for stochastic mortality modelling using
Hermite splines. There are four useful features of this class that are worth emphasising. First,
for single-sex datasets this new class of projection models can be fitted as a Generalized Linear
Model (GLM). Second, these models can automatically extrapolate mortality rates to ages above
the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting
when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the
quality of long-range forecasts of period mortality.

Regarding the barrier-fitting algorithm in Tang et al. [2022], it is worth noting that for a single-
sex data set the penalty is not required and the model in equation (8) is then just a Generalized
Linear Model (GLM) [McCullagh and Nelder, 1989]. Furthermore, the models specified in equation
(8) require no identifiability constraints. This can be proved by showing that the rank of the model
matrix, X, equals the length of the parameter vector, B [Currie, 2020]. This is a feature shared only
with the stochastic mortality model of Cairns et al. [2006], which is itself also a GLM. The models
of Tang et al. [2022] are therefore easily implemented for single-sex datasets.

Like the Gompertz model of Cairns et al. [2006], the Hermite-spline models of Tang et al. [2022]
can extrapolate mortality rates beyond the upper age of the available data. This is a particularly
useful feature for actuarial calculations involving annuities and pensions. For example, in Figure 1
the calibrating data stop at age 105, but extrapolation to higher ages was achieved simply by setting
x1 = 120. In the case of females for England & Wales, Table 1 shows that using x1 = 120 also
markedly reduces the AIC [Akaike, 1987] compared to using x1 = 105. The Gompertz model of
Cairns et al. [2006] extrapolates an ever-increasing mortality hazard with age, as advocated by
Gavrilov and Gavrilova [2015]. In contrast, the Hermite-spline models of Richards [2020] and Tang
et al. [2022] extrapolate to a mortality plateau, as advocated by Gampe [2010]. In Figure 1 the
limiting mortality hazard is around 1.089, corresponding to a limiting annual mortality rate of 66%.
This compares with annual mortality rates of 61-63% at age 119 in the mortality tables used by
UK actuaries for pension and annuity calculations (CMI, 2020). In contrast, Gampe [2010] found a
limiting annual mortality rate of 50%, which is the rate assumed from age 112 by US actuaries for
similar calculations (PBGC, 2023).

For mortality projections it is necessary to have a clear time signal in the parameters. However,
not every parameter vector for every data set will exhibit this. An example is shown in Figure 2 for
females in England & Wales — there is a clear time signal for {α̂t}, and a relatively clear signal for
{ŝ0,t} after the mid-1990s, but not for {ω̂t}. The estimated drift term, µ̂, for the {ω̂t} process is 0.002
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Figure 1: Observed, fitted and extrapolated mortality rates in 2019 for females in England & Wales, ages
50–105. Source: own calculations for HS2 GLM of Tang et al. [2022] using data at ages 50–105, 1971-2019.
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Figure 2: Parameters for HS2 GLM behind Figure 1.

1980 2000 2020

−6

−5.8

−5.6

−5.4

Year

(a) α̂t

1980 2000 2020
2

3

4

5

Year

(b) ŝ0,t
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with a standard error of 0.0095, suggesting that {ω̂t} is merely a random walk without drift. For a
long-term forecast it therefore makes sense to adopt a simplifying assumption of ωt = ω as follows:

logM = XB = [Iny ⊗ h00 : Iny⊗ : h10 : h01]B (1)

where h00, h10 and h01 denote the column vectors of Hermite splines in Tang et al. [2022, equation
(3)]. For a single-sex data set equation (1) is also a GLM that requires no identifiability constraints.
Like the corresponding CBD model, the mortality rates in equation (1) would also be forecast with
a bivariate random walk with drift for (αt, s0,t). The long-term projection of mortality rates under
equation (1) will be simpler and more stable than the trivariate HS2 model, albeit at the cost of a
poorer fit to the data, as shown in Table 1.

Table 1: AICs for various GLMs fitted to data for females in England & Wales, ages 50–105, 1971-2019.

AIC:
Model Parameters x1 = 105 x1 = 120
Trivariate HS2 3ny = 147 89,841.8 42,020.4
Bivariate HS2 with constant ω 2ny + 1 = 99 96,355.8 48,010.8
Bivariate Gompertz (CBD) 2ny = 98 73,562.5 73,562.5

However, closeness of fit to data is not the sole criterion (or even necessarily the best one) when
choosing a forecasting model. The quality of the forecast [Cairns et al., 2009] is also a consideration,
and the forecast values of s0,t in Figure 2 will eventually turn negative, thus causing projected period
mortality rates at young ages to reduce with increasing age, as shown in Figure 3. This minor defect
in the forecast can be corrected by replacing the s0,t multiplier of h10 with es

∗
0,t . This adjusted model

is not a GLM, but as long as ŝ0,t > 0 in equation (1), then we can derive ŝ∗0,t = log ŝ0,t. The other
parameters and the model fit overall are unchanged, but the bivariate random walk with drift applied
to (αt, s

∗
0,t) leads to non-decreasing mortality rates at all periods in the forecast, as shown in Figure 3.

Thus, forecast quality can be improved at no change to the fit as long as ŝ0,t > 0.
The choice of which HS2 parameterisation to use — the trivariate (αt, s0,t, ωt) model of Tang

et al. [2022] or the bivariate model (αt, s
∗
0,t) based on equation (1) — will depend on the applica-

tion. For a long-term forecast of period mortality, one would probably use (αt, s
∗
0,t). However, with

short-term value-at-risk calculations for the likes of Solvency II [Richards et al., 2020] it would be im-
portant to fully express the short-term variability in ωt, and so one would probably use the trivariate
parameterisation of Tang et al. [2022] for sample paths.
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Figure 3: Forecast mortality rates in 2100 (i.e. time ny+81) for females in England & Wales using alternative
multipliers for the h10 Hermite spline. Source: own calculations using data at ages 50–105, 1971-2019.
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