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Abstract

Stochastic mortality models are important for a variety of actuarial tasks, from best-estimate
forecasting to assessment of risk-capital requirements. However, the mortality shock associated
with the covid-19 pandemic of 2020 distorts forecasts by (i) biasing parameter estimates, (ii)
biasing starting points, and (iii) inflating variance. Stochastic mortality models therefore re-
quire outlier-robust methods for forecasting. Objective methods are required, as outliers are
not always obvious on visual inspection. In this paper we look at the robustification of three
broad classes of forecast: univariate time indices (such as in the Lee-Carter and APC models);
multivariate time indices (such as in the Cairns-Blake-Dowd and newer Tang-Li-Tickle model
families); and penalty projections (such as with the 2D P-spline model). In each case we identify
outliers using quantitative methods, then co-estimate outlier effects along with other parame-
ters. Doing so removes the bias and distortion to the forecast caused by a mortality shock, while
providing a robust starting point for projections. Illustrations are given for various models in
common use.
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1 Introduction
Covid-19 [The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020] caused
mortality shocks in many countries — Figures 1(b) & (d) show the sharp increase in death counts
in England & Wales in 2020 compared to 2019. These shocks were also present in insurer data sets;
Richards [2022a] demonstrated covid-related mortality shocks in annuity portfolios in France, the
UK and the USA. The other strong feature of Figures 1(b) & (d) is the inflection point of 2011, but
this paper is concerned with outliers, rather than trend changes.

Actuaries typically split mortality bases into two components: (i) current levels and (ii) future
improvements. For current mortality levels actuaries use a portfolio’s own recent experience, often
using individual lifetimes and multiple covariates; Richards [2022b] presents a methodology allowing
for covid-19 when conducting such analysis. However, to obtain a long enough time series for fore-
casting future improvements, actuaries typically use population data. Such data has a very different
structure, namely grouped counts at individual ages with no covariate information beyond separate
data for males and females [Macdonald et al., 2018, Chapter 10].

Many insurers use stochastic mortality models calibrated to population data for future-improvement
modelling, and thus risk management, solvency and reporting. There is a broad selection of available
stochastic mortality models, each with different quantitative and qualitative properties [Cairns et al.,
2009]. However, few of these models are designed to cope with outliers, such as pandemic shock
mortality. This is a problem for actuaries, as “the presence of even a few anomalous data can lead to
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model misspecification, biased parameter estimation and poor forecasts” [Galeano et al., 2006, p654].
The 2020 mortality experience constitutes just such a distorting anomaly.

One easy approach is just to ignore the affected data. This is only a short-term solution, however,
as the 2020 & 2021 experience will over time move from the trailing edge towards the middle of
the exposure period. This “deletion approach” is subjective, and two parties may not always agree
on what counts as an outlier; Figures 6 and 7 give an example for M9, where it is by no means
obvious from visual inspection that 2020 is an outlier. Indeed, outliers can sometimes be masked
[Hadi, 1992], and specific examples of this are given in Section 5 and Figure 8. Finally, there is an
insurance-specific aspect, whereby actuaries repeatedly refit models to measure recalibration risk.
An important example is for value-at-risk calculations for longevity trend risk under Solvency II
[Richards et al., 2014]. For such tasks, an automated outlier-detection procedure is required, for
which an objective approach is needed.

The plan of the rest of this paper is as follows: Section 2 describes the data set used, while
Section 3 outlines some other approaches to dealing with mortality outliers; Section 4 discusses a
methodology for robustifying forecasts of univariate time indices, such as the Lee-Carter and APC
models; Section 5 describes approaches for multivariate random walks, such as the Cairns-Blake-
Dowd and Tang-Lee-Tickle model families; Section 6 presents the results of an approach to the 2D
P -spline model, while Section 7 concludes.

2 Data description
The data consist of observed deaths in England and Wales, dx,y, at age x last birthday in calendar year
y, together with corresponding mid-year population estimates, Ec

x,y. The data thus lend themselves
to modelling the central mortality rate, mx,y, without adjustment. Alternatively, the data can be
viewed as suitable for modelling the mortality hazard at age x + 1/2 at time y + 1/2.

The data are sourced from the Human Mortality Database (HMD) and we use the subset x ∈
{50, 51, . . . , 105} and y ∈ {1971, 1972, . . . , 2020}. We therefore have nx = 56 ages and ny = 50
years. The age category x = 105 technically contains all ages 105 and over, but as the numbers
are very low we will treat all those aged 105 and over as being age 105 for simplicity. We will
alternate our illustrations between males and and females for variety, but both sexes exhibit similar
forecasting problems caused by pandemic-affected mortality. Figure 1 shows the marginal death
counts, with panels (b) and (d) showing the unusually large number of deaths in 2020 due to the
covid-19 pandemic.

Models in this paper assume that the number of deaths at age x in year y follow a Poisson
distribution. With the exception of the 2D P-spline model, no allowance is made for over-dispersion
in the Poisson counts. With the exception of the Lee-Carter model, models are fitted as penalised
constrained generalised linear models using the algorithm of Currie [2013].

3 Some other approaches to outliers
3.1 Ignoring affected data
The immediate response of most actuaries was to ignore the 2020 data and to continue using models
calibrated up to 2019. This was a practical, short-term approach to a highly unusual situation.
However, ignoring the mortality experience of one or two years is not a permanent solution, and
more rigorous approaches are required. This is particularly the case once the affected years move
towards the middle of the data series, as is the case at the time of writing.
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Figure 1: Marginal death counts in England & Wales, ages 50–105, 1971–2020. Source: HMD data.

3.2 Robust likelihood estimation
Maximum-likelihood methods can be very sensitive to the presence of outliers in the data. To
illustrate, consider an observation, z, supposedly from a N(0,1) distribution. The contribution of this
observation to the negative log-likelihood is quadratic:

− �(z) ∝ 1
2z2 (1)

which means that an outlier has an outsized — and unbounded — influence on estimation. As a
result, much early work on time-series robustification focused on robustifying the likelihood through
use of ρ functions. A ρ function is designed to replace the usual quadratic contribution in equa-
tion (1) with a function that is non-quadratic for extreme values. An ideal ρ function should behave
approximately quadratically for observations that are a modest distance from the mean, but it should
limit the contribution of extreme values (unlike equation (1), where an outlier can make an unlimited
contribution, thus causing bias). There are many options for such functions, such as in Hampel [1974]
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and Maronna et al. [2006, Section 2.2.4]. One early example is the ρ function from Huber [1964]:

ρ(z, k) =




1
2z2, |z| ≤ k

k|z| − 1
2k2, |z| > k

(2)

which is shown in Figure 2 for k = 1. The Huber ρ function is identical to the quadratic −�
function within one standard error of the mean, but extreme observations have a linearly increasing
contribution to the robustified log-likelihood instead of an exponentially increasing contribution. The
extent to which an outlier contributes to the robustified log-likelihood is dependent on the value of
k, which requires some sort of judgement.
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Figure 2: Contribution to (negative) log-likelihood for normal
variable and robustified contribution using the Huber ρ-function
of equation (2) with k = 1.

ARIMA models are a particularly
useful representation of stochastic uni-
variate mortality processes, and Mar-
tin et al. [1983] examined in detail
how to robustify the conditional log-
likelihood function for such models.
One benefit of such an approach is the
ability to calculate a “clean” version of
an affected time series, thus allowing
(i) the estimation of an outlier effect,
and (ii) the calculation of a sensible
forecast start point where the most re-
cent observations contain outliers.

However, robustifying the log-
likelihood involves trade-offs. One is
reduced estimation efficiency: in Fig-
ure 2 observations around 1.5-2 stan-
dardised deviations away from the
mean make less of a contribution to
the log-likelihood than they should in
theory, thus making less than full use
of all available data. Maronna et al.
[2006, Section 5.9.1] presented an “optimal” function that balances robustness and efficiency, but it
still does not achieve full efficiency. This is a particular issue for mortality forecasting work, where
actuaries often only use data for the past fifty years or so. A particular concern is efficient estimation
of the variance of the innovation process, as this plays a large role in determining value-at-risk capital
requirements [Kleinow and Richards, 2016, Section 7].

3.3 Weighting
Daneel et al. [2022] introduced a weighting system for the likelihood, initially with zero weights
for pandemic-affected years 2020 and 2021. This was later extended to fractional weights for post-
pandemic years in Daneel et al. [2023]. This approach has at least four problems. Firstly, it requires
the analyst to decide what years are outliers, as in Section 3.1. While this can be relatively straight-
forward for univariate time indices, it is far from simple in multivariate cases; see Section 5, especially
Figures 6 and 7.

Second, weights are manually chosen and therefore arbitrary. This is a potential issue for value-at-
risk assessments, which involve repeated simulation and refitting of mortality models. Such repeated
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model recalibrations require objective criteria for dealing with outliers automatically.
Third, weighting the log-likelihood does not give an estimate of the size of the outlier effect.

This means weighting cannot provide a clean starting point for a forecast if recent observations are
outliers.

The final problem with weighting the log-likelihood is that it does not fully address the bias
problem. Consider weighting the log-likelihood contribution by w ∈ (0, 1]. The weighted contribution
to the negative log-likelihood function is then ρ(z) = w

2 z2, which is still an exponentially increasing
function of the outlier, z. Thus, weighting observations is not only arbitrary, but it still leaves the
distorting potential of severe outliers.

If a model cannot handle a feature of real-world data, then a new model is required. In the
following three sections we consider three major classes of stochastic model in common actuarial use
and how they can be modified to cope with outliers such as those caused by covid-19.

4 Univariate time indices
4.1 Univariate mortality models
Univariate mortality indices are central to several important stochastic projection models, including
the model of Lee and Carter [1992]:

log mx,y = αx + βxκy (3)

and the Age-Period-Cohort (APC) model:

log mx,y = αx + κy + γy−x (4)

Both models require identifiability constraints to fit, but both fit and forecast for these models are
independent of the choice of linear constraints [Currie, 2020]. When fitting such models it is useful
to smooth αx and βx, as this reduces the dimensionality of the models and improves forecasting
performance by reducing the risk of crossover at adjacent ages in the forecast [Delwarde et al., 2007].

To forecast mortality under the Lee-Carter and APC models we need to forecast κy. We can
either use a simple random walk with drift, or else a full regression ARIMA model; see Appendix A
for the structure and operation of both within an ARIMA framework. Note that a random walk with
drift is just an ARIMA(0, 1, 0) model, and that a full ARIMA(p, 1, q) model often fits κy better
[Kleinow and Richards, 2016, Table 2]. Appendix B.1 considers fitting a random walk with drift in
R, while Appendix B.2 considers fitting an ARIMA model around a linear trend.

4.2 Outlier types
For robust estimation of ARIMA models for univariate forecasting we consider the approach of Chen
and Liu [1993], which contains two elements. First, Chen and Liu [1993] proposed a objective tests
to identify where outliers occur. Second, they proposed tests to identify the type of outlier. The
ARIMA-robustifying methodology of Chen and Liu [1993] works for two kinds of forecasting model
for κt: either a simple random walk with drift, or a regression ARIMA model. Appendix B.3 shows
how an outlier effect is co-estimated with the model parameters once an outlier location has been
decided.

Chen and Liu [1993] presented tests for four types of outlier: additive outlier (AO), innovation
outlier (IO), temporary change (TC) and level shift (LS). Stylised illustrations of each of these are
given in Figure 3 for a simple moving-average process, Yt, defined as follows:
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Yt = εt − 0.8εt−1 (5)

where εt ∼ N(0, 0.1) and Cov(εi, εj) = 0, ∀i �= j. Figure 3(a) shows the first 50 simulations of such a
process using the R code in Appendix A.

In Figure 3(b) an additive outlier of 1 has been added to the uncontaminated process at t = 30
with all other observations unchanged. The AO represents an external contamination at a specific
point without further downstream consequences. In Figure 3(c) an innovation outlier of 0.5 has been
added at t = 29 — since an IO is an integral part of the process, it affects the series value at t = 30
as well. In Figure 3(d) a number of consecutive additive outliers of 0.9 ∗ 0.7t−30 have been added at
t ≥ 30 to form a temporary change in the series whose impact diminishes. Finally, in Figure 3(e) the
series has a permanent shift in level of +0.9 for t ≥ 30.
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Figure 3: Types of outliers in moving-average process Yt = εt − 0.8εt−1. Source: own simulation using the
R code in Appendix A.

Chen and Liu [1993] developed statistical tests to identify outliers and classify them according to
type. However, while it is possible to identify an outlier anywhere in the series, “it is impossible to
empirically distinguish the type of an outlier occurring at the very end of a series” [Chen and Liu,
1993, page 286]. This has direct relevance to present-day modelling — whilst covid-19 is a detectable
outlier, approaches like that of Chen and Liu [1993] cannot tell us the nature of the outlier until we
have observations after the end of the pandemic.

In mortality work we seek to robustify by identifying and measuring AO, TC and LS outliers.
In contrast, IO outliers are left in as they are part of the underlying process. The rationale for
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this is that occasional winters of heavy mortality are a recurring feature, so we do not want to
exclude them. Furthermore, “least squares estimates are less affected by innovation outliers than
by additive outliers” [Martin et al., 1983, p6]. Also, excluding IOs would lead to underestimation
of the variance of the ARIMA innovation process, σ2; this would be undesirable in actuarial work,
since this parameter is a major driver of value-at-risk capital requirements for longevity trend risk
[Kleinow and Richards, 2016, Section 7].

4.3 Choice of critical value
Outliers are determined by Chen and Liu [1993] with reference to a critical value. This varies by
researcher, but many have opted for a critical threshold of 3 standardised deviations [Maronna et al.,
2006, p6]; with a normally distributed sample, only around 0.3% of observations should be that far
away from the mean.

Chen and Liu [1993, Section 3] carried out extensive tests of critical values between 2.25 and
3.5 using simulated series with 100 observations. However, the mortality patterns of the 1920s and
1930s are not generally pertinent to modern actuarial work, so actuaries typically use time series of
much shorter length of, say, around 50 years. As a result, it is often best to use a critical threshold
greater than 3. Consider the example of a Lee-Carter model fitted to the mortality of females in
England & Wales over 1971–2020. The best-fitting ARIMA model for κy using the Chen and Liu
[1993] outlier-identification approach leads to the results shown in Table 1.

Critical value 3 3.25 3.5
Years identified as
containing AOs

1973, 1976, 1984, 1991, 1994,
1996, 2003, 2011, 2014 and 2020

2003, 2011
and 2020

2020 only

σ̂2 2.78 × 10−5 9.37 × 10−5 1.29 × 10−4

Estimated effect of
2020 outlier

0.0954 0.0572 0.0597

t-value of 2020 outlier n/a 5.23 4.96

Table 1: Selected results from fitting a Chen and Liu [1993] regression ARIMA model to the {κ̂y} values in
a Lee-Carter model. Source: own calculations using mortality data for females in England & Wales, ages
50–105, years 1971–2020.

Using a critical threshold of 3, the methodology of Chen and Liu [1993] finds outliers in ten out
of 50 years, which is excessive. This suggests that for univariate mortality models a higher critical
threshold is required. In contrast, using a critical threshold of 3.5 for females in England & Wales
identifies the one expected outlier in 2020. This is supported by the test results for simple AR(1)
and MA(1) models in Chang et al. [1988, Tables 1 and 2], where a critical value of 3.5 also worked
well for a series length of 50. Once again, there is also a specifically actuarial reason to use a higher
critical threshold — Table 1 shows that excluding too many observations leads to an artificially low
estimate of σ2. Since σ2 is a main driver of value-at-risk capital requirements for longevity trend risk
[Kleinow and Richards, 2016, Section 7], too low a critical value would lead to under-stated capital
requirements.

A critical value of 3.5 performed well in identifying an AO of five standardised deviations in Chang
et al. [1988, Table 4], and the t-values in Table 1 suggest that the covid-19 mortality in 2020 was also
a five-sigma event, i.e. an event five standard deviations away from the mean. However, a true five-
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sigma event might occur a handful of times every million years, and yet the two mortality spikes due
to covid-19 in 2020 and 2021 were no worse than the two mortality spikes due to influenza in 1918 and
1919 [Richards, 2022b, Figure 2]. Two “five-sigma” events in a hundred years suggest that the model
is wrong (either the Lee-Carter structure or the ARIMA assumption) or that σ̂2 underestimates the
true variance of the innovation process. Either way, it is a reminder that value-at-risk methodologies
calibrated to fifty years of data can only set a lower bound for the capital required.

Figure 4 shows the impact of robustifying the regression ARIMA model for forecasting. According
to Martin et al. [1983, p2] “outliers can [lead to] incorrect model idenfification [...] and seriously
impede the construction of forecasts based upon these historical data”. We see an example of this
in Figure 4(b), where the unrobustified forecast for males is rendered nonsensical due to the bias in
the likelihood caused by covid-19 mortality. However, the robustified forecast has a more sensible
starting point and direction.
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Figure 4: Observed mortality rates at age 70 with Lee-Carter forecasts using ordinary regression ARIMA
model (Appendix B.2) and robustified regression ARIMA model with critical value 3.5 (Appendix B.3).
Source: own calculations using data for males and females in England & Wales aged 50-105, over the period
1971-2020.

5 Multivariate time indices
In this section we look at stochastic mortality models that forecast using a multivariate random walk
with drift. There are two broad families: (i) Cairns-Blake-Dowd models, which assume a Gompertz
mortality pattern with age, and (ii) Tang-Li-Tickle models, which use Hermite splines to allow for
slower mortality increases at very advanced ages. Both families are well-suited to actuarial work
because they naturally extrapolate mortality rates to ages higher than the maximum age of the
calibrating data set.

5.1 Cairns-Blake-Dowd models
Table 2 gives an overview of four CBD models. The missing model, M8, is excluded as it tends to
produce unstable forecasts [Cairns et al., 2011, Section 6], although as a three-dimensional random
walk with drift it could be robustified in the same way as M7 and M9.
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Model Formula Reference
M5 κ0,y + κ1,y (x − x̄) Cairns et al. [2006]
M6 κ0,y + κ1,y (x − x̄) + γy−x Cairns et al. [2009, Section 4.6]
M7 κ0,y + κ1,y (x − x̄) + γy−x + κ2,y ((x − x̄)2 − σ̂2) Cairns et al. [2009, Section 4.7]
M9 κ0,y + κ1,y (x − x̄) + γy−x + κ2,y ((x − x̄)2 − σ̂2) + αx Dowd et al. [2020, Section 2]

Table 2: Selected members from the CBD model family for log mx,y. The layout of the formulae emphasises
the commonality and differences between adjacent models. x̄ =

∑xmax
x=xmin x/nx = 77.5 is the unweighted

mean age, while σ̂2 =
∑xmax

x=xmin(x − x̄)2/nx = 252.25 is a normalizing constant based on the average squared
deviation around x̄.

The parameter naming convention in Table 2 is kept consistent with Cairns et al. [2006] and
Cairns et al. [2009], where the various κ terms form the bivariate and trivariate random walks with
drift for forecasting. However, it is worth emphasising that these are dependent parameters, and
that their values and role depend on the other parameters in the model. This is particularly the case
for M9, where the age term, αx, changes the shape, scale and nature of the κ terms compared to the
other three models.

The models in Table 2 are all fitted as Generalized Linear Models (GLMs) with a Poisson as-
sumption for the number of deaths at each combination of age and year [Currie, 2016]. We ignore
the over-dispersed nature of the death counts, as over-dispersion does not bias estimated means.
Djeundje and Currie [2011] discuss dispersed mortality counts in more detail.

Many stochastic mortality models require identifiability constraints [Currie, 2020], but M5 does
not require any. M6, M7 and M9 contain a cohort term, γy−x, which ordinarily requires two or
more identifiability constraints. However, following Richards et al. [2019, Appendix B] we do not
estimate cohort terms with fewer than four observations, which means no identifiability constraints
are required for M6 or M7. This contrasts with the implementation in Cairns et al. [2009], where
two identifiability constraints were used for M6 and three for M7. If we drop cohort terms with fewer
than four observations, the only CBD model requiring identifiability constraints is M9, which needs
three linear constraints. Here we use the following for M9:

ymax∑
y=ymin

κ0,y =
ymax∑

y=ymin

κ1,y =
ymax∑

y=ymin

κ2,y = 0 (6)

However, there are nevertheless circumstances when we might want to impose more constraints
than are mathematically necessary for identifiability. One such reason is to obtain parameter esti-
mates that are forecastable. Figure 5 shows some parameter estimates under minimal identifiability
constraints, and these patterns are not consistent with a multivariate random walk with drift. In
this paper we therefore over-contrain our M9 models — Figure 6 shows that additional constraints
on γy−x, although mathematically unnecessary for identifiability, do nevertheless produce parameter
estimates more consistent with the forecasting assumption of a multivariate random walk with drift.
Currie [2020] provides an extensive treatise on identifiability constraints in linear models, including
tests for determining the minimum number of identifiability constraints required.

For forecasting we define κ as an ny × p matrix composed of the relevant parameters in Table 2.
For example, for the M9 model using data for 1971–2020 we would have the following 50 × 3 matrix:

9
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Figure 5: Estimates for period effects under minimally-constrained M9 model. These parameter estimates
are not consistent with a multivariate random walk with drift. Contrast with the over-contrained equivalent
in Figure 6. Source: Own calculations using HMD data, females aged 50–105, 1971–2020.

κ =




κ0,1971 κ1,1971 κ2,1971
κ0,1972 κ1,1972 κ2,1972

... ...
κ0,2020 κ1,2020 κ2,2020




(7)

We will confine ourselves to robustifying the multivariate random-walk element of models M5,
M6, M7 and M9, which allows the forecasting of existing cohorts. The projection of γy−x under
M6, M7 and M9 does not require robustification. We note that such outlier cohorts as have been
identified in raw data [Cairns et al., 2015] are largely dealt with by the methods protocols used by
the HMD. See Boumezoued [2021] for details on how outlier cohorts arise from sudden shifts in birth
distribution, and how fertility data can be used to improve exposure estimates.

5.2 Tang-Li-Tickle models
A new class of stochastic mortality models was introduced by Tang et al. [2022]. Instead of the linear
Gompertz assumption in CBD models, TLT models use Hermite splines:

h00(x) = (1 + 2f(x))(1 − f(x))2 (8)
h10(x) = f(x)(1 − f(x))2 (9)
h01(x) = f 2(x)(3 − 2f(x)) (10)
h11(x) = f 2(x)(f(x) − 1) (11)

f(x) = x − x0

x1 − x0
(12)

where x0 is the minimum modelled age and x1 is the maximum modelled age. Often these are
set to the minimum and maximum age of the calibrating data set, but they can lie outside. For
example, although the maximum age in the England & Wales data set in this paper is 105, we can
set x1 = 120 to extrapolate mortality rates to this age. With the Hermite basis splines we can define
the Tang-Li-Tickle family of models in Table 3.

10
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Model Formula Reference
HS1 αyh00(x) + ωyh01(x) Tang et al. [2022]
HS2 αyh00(x) + ωyh01(x) + s0,yh10(x) Tang et al. [2022]
HS3 αyh00(x) + ωyh01(x) + s1,yh11(x) Tang et al. [2022]
HS4 αyh00(x) + ωyh01(x) + s0,yh10(x) + s1,yh11(x) Tang et al. [2022]
HS5 αyh00(x) + ωh01(x) + s0,yh10(x) Richards [2023]

Table 3: TLT model family for log mx,y.

The models in Table 3 are all fitted as GLMs and do not require identifiability constraints. (The
TLT family is new, and so has not yet been extended to include cohort terms.) Like CBD models,
TLT models are useful actuarially because they can extrapolate fitted mortality rates beyond the
highest age of the calibrating data set [Richards, 2023, Figure 1].

As with the CBD models in Table 2, the models in Table 3 are also forecast using multivari-
ate random walks with drift: HS1 and HS5 are bivariate, HS2 and HS3 are trivariate and HS4 is
tetravariate. In practice there is often such a weak or non-existent trend in some of these variables
that it makes sense to impose a common value across time. This is done for HS5, which is a version
of HS2 with ωy = ω, i.e. turning a trivariate forecast into a bivariate one. HS5 is essentially the
Hermite-spline analogue of M5 in Table 2.

For forecasting we define κ as an ny × p matrix composed of the relevant parameters in Table 3.
For example, for the HS2 model using data for 1971–2020 we would have the following 50×3 matrix:

κ =




α1971 ω1971 s0,1971
α1972 ω1972 s0,1972

... ...
α2020 ω2020 s0,2020




(13)

5.3 Outlier detection for multivariate random walks
Forecasting for the CBD and TLT families is performed as a p-dimensional random walk with drift.
This means that the row differences in κ̂ between any two consecutive years are assumed to have a
multivariate normal distribution with constant mean vector µ and constant covariance matrix Σ, i.e.
∆κ̂ ∼ MVN(µ,Σ).

The detection of outliers in multivariate data can be tricky — “it is quite possible for data to
be outliers in multivariate space, but not outliers in any of the original univariate dimensions” [Hadi
et al., 2009, p57]. A possible example of this is shown for M9 in Figure 6 — there is no trace of an
outlier in κ̂1,2020 or κ̂2,2020, with only a weak suggestion of a possible outlier in κ̂0,2020. This is an
interesting contrast to the univariate example in Figure 17, where the outlier in 2020 is quite clear.

Since model parameters are dependent on each other, the real question is whether the triplet
(κ̂0,2020, κ̂1,2020, κ̂2,2020) is an outlier? Figure 7 shows a scatterplot of ∆κ̂, which further illustrates the
difficulty of using visual inspection — is 2020 the outlier, or is 1977? Or are there any outliers at all?

One approach to multivariate random walks is to use the Mahalanobis distance, Dj, for a p-
dimensional observation, zj = ∆κj:

Dj =
√

(zj − µ)TΣ−1(zj − µ) (14)
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Figure 6: Estimates for forecasting parameters under over-constrained M9. Contrast with the minimally-
contrained equivalent in Figure 5. Source: Own calculations using HMD data, females aged 50–105, 1971–
2020.
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Figure 7: Scatterplot of ∆κ̂ for M9. Source: Own calculations using HMD data, females aged 50–105,
1971–2020.
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Figure 8 plots the distance measures for ∆κ̂. If there are no outliers, and zj has a normal distribution,
then Dj ∼ χ2

p, where p is the number of columns in κ̂. The upper 5% quantile of χ2
3 is 7.815, so at

face value it looks like 2020 is not an outlier for females in England & Wales under M9.
However, Hadi et al. [2009, p60] noted that the “Mahalanobis distance is not robust, as it is

affected by masking and swamping”. Masking is the phenomenon whereby an outlier is hidden
because it inflates the estimate of variance used to detect outliers. Swamping is the phenomenon
whereby non-outliers have a large Mahalanobis distance because an outlier has distorted the mean
of the process. We therefore have an example of masking in Figure 8 because the estimate Σ̂ used
in equation (14) has been distorted by the presence of the outlier we suspect is there. This is an
issue for insurers in particular, since a distorted Σ̂ will likely lead to excessive capital requirements.
Hadi [1992] presented an approach to identifying multivariate outliers, later updated in Hadi [1994],
which used robust measures for the mean and covariance matrix to minimise the risk of masking and
swamping.

1970 1980 1990 2000 2010 2020
0

2

4

6

Figure 8: Mahalanobis distance for ∆κ̂ for M9. Source:
Own calculations using HMD data, females aged 50–105,
1971–2020.

More recently, Galeano et al. [2006] pre-
sented a methodology of outlier detection
for multivariate data using projection pur-
suit; see also [Huber, 1985] for an early
introduction to this topic. Like the Ma-
halanobis distance, projection pursuit re-
duces a multidimensional problem to a uni-
variate one. Galeano et al. [2006] pre-
sented a methodology that sought a map-
ping from a vector ARMA (VARMA) model
to a univariate ARMA one, and further-
more sought mappings that maximized and
minimized the kurtosis coefficient. This is
done because the kurtosis coefficient, be-
ing the fourth moment, is even more sensi-
tive to outliers than the quadratic function
of equation (1). Illustrations of applying
Galeano et al. [2006] to some M9 models
are given in Figure 9.

Galeano et al. [2006] considered far more complicated VARMA and VARIMA models with more
dimensions and longer time series than actuaries face with CBD and TLT models; Appendix C
examines some of the limitations of this methodology when applied to the shorter time series with
fewer dimensions that are more typical of stochastic mortality work.

6 2D penalty projections
The last of our three classes of projection is the penalty method of the 2D age-period (2DAP)
penalised-spline model of Currie et al. [2004]. This 2DAP model was extended to include period
shocks by Kirkby and Currie [2010]. In the models fitted in this section we further extend Kirkby
and Currie [2010] to allow for over-dispersion.

Kirkby and Currie [2010, equation 2.9] defined the 2DAP model as a generalized linear array
model (GLAM):

logM = logEc + BaΘB′
y (15)
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Figure 9: Observed mortality rates at age 70 with forecasts using ordinary M9 model [Dowd et al., 2020,
Section 2] and robustified M9 model. Source: own calculations using data for males and females in England
& Wales aged 50-105, over the period 1971-2020.

where M is the matrix of mortality rates indexed by age in the rows and by calendar year in the
columns, Ec is the corresponding matrix of population exposures, Ba is a B-spline basis matrix for
age, By is a B-spline basis matrix for time, and Θ is a matrix of regression coefficients.

Fitting the GLAM is done by expressing equation (15) in vector form:

log vec(M) = log vec(Ec) + (By ⊗ Ba)θ (16)

where the vec() function stacks the columns of a matrix into a single vector, ⊗ is the Kronecker
product and θ = vec(Θ). In the fitting procedure, the coefficients in Θ are simultaneously smoothed
in the age and time dimensions by suitable penalty functions. The problem with a mortality shock
is that smoothing in the time dimension is no longer sensible. Kirkby and Currie [2010] therefore
extended the model in equation (16) to include period shocks as follows:

log vec(M) = log vec(Ec) + (By ⊗ Ba)θ + (Iny ⊗ B̆s)θ̆ (17)

where Iny is the identity matrix for ny years, B̆s is a B-spline basis in age and θ̆ is a vector of
shock coefficients. B̆s and Ba are both basis matrices in age, but B̆s typically has fewer knots than
Ba. When applied to the mortality of females in England & Wales, equation (17) reveals the period
shocks shown in Figure 10.

Figure 10 shows that the model of Kirkby and Currie [2010] not only picks up the covid-19
mortality shock of 2020, but also various minor period shocks since 1971. However, for robustification
we are arguably less interested in the minor shocks and would prefer to smooth the most trivial ones
towards zero. Kirkby and Currie [2010] therefore proposed an extension whereby the amount of
smoothing varies by a scaling factor that is defined by a given year’s shock size relative to the largest
shock. Thus, if the basic smoothing parameter is λs, the scaled smoothing parameter for year i, λi,
is then:
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Figure 10: Unscaled period shocks under model in equation (17). Source: own calculations using data for
females in England & Wales aged 50-105, over the period 1971-2020.

λi = λs

(
largest shock size

shock size for year i

)α

, i = 1, . . . , ny (18)
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Figure 11: Inverse relative scaling factors (λs/λi) for
2D period-shock model of Kirkby and Currie [2010]
with α = 3.24. Source: own calculations using data
for females in England & Wales aged 50-105, over the
period 1971-2020.

Figure 11 shows the inverse relative scaling
factors (λs/λi) for simple scaling with α = 3.24.
The factor λs/λi is small for all years relative to
2020, showing that all years bar 2020 have heavy
smoothing applied.

Equation (18) gives rise to four smoothing
options: (i) no scaling (α = 0), as used in
the model behind Figure 10; (ii) simple scaling
(α = 1); (iii) fixed scaling, i.e. α is set to a given
value; and (iv) optimised scaling, i.e. where α is
set by minimising an information criterion such
as the BIC. Figure 12 shows the period shocks
under optimised scaling, which shows that minor
period effects are smoothed towards zero, leav-
ing a focus on the most significant (and other-
wise most distorting) shocks. One result is that
the magnitude of the 2020 shock is larger in Fig-
ure 12 than in Figure 10. Another feature of
Figure 12 is that the 2020 shock reduces in size
with increasing age. This has parallels with the
age-dependent shocks shown in Kirkby and Cur-

15

rie [2010, Figure 5], where the excess mortality of the 1919 influenza pandemic was dramatically
higher at ages 20–40 than at post-retirement ages. The reducing shock mortality with increasing
age in 2020 contrasts with the pattern of increasing excess mortality with age for the minor shocks
in Figure 12. The minor shocks are therefore not just smaller in magnitude, but also qualitatively
different.

Figure 12: Period shocks under optimised scaling using equation (18). Source: own calculations using data
for females in England & Wales aged 50-105, over the period 1971-2020.

The use of the 2D period-shock model removes the distorting influence of the covid-19 pandemic.
This produces more sensible forecasts without the undue influence of outliers, as shown in Figure 13.

7 Conclusions
The covid-19 mortality shock of 2020 created outliers in the population mortality data of many
countries. These outliers bias parameter estimates in mortality projection models, thus affecting
central forecasts and value-at-risk assessments of insurer capital requirements for longeviy risk. The
short-term solution of ignoring the 2020 and 2021 experience works only as long as those years are
at the trailing edge of the data set. As the covid-affected years move towards the middle of the
time series, other approaches are needed, especially objective procedures that can be automated for
value-at-risk assessments.

Determination of outliers by visual inspection is unreliable, as how an outlier affects parameter
estimation is model-dependent. Simplistic solutions like weighting the log-likelihood are similarly
subjective, while also failing to insulate parameter estimates from the bias caused by extreme values.
We therefore require objective procedures to (i) identify outliers and — where possible — classify
them, (ii) estimate outlier effects alongside forecasting parameters to reduce bias, and (iii) calculate
a robust starting point for forecasts where recent observations contain outliers. We outline such
objective methods for three classes of stochastic mortality-forecasting models: (i) the approach of
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Figure 13: Observed mortality rates at age 70 with forecasts using ordinary 2DAP model [Currie et al.,
2004] and 2DAP period-shock model [Kirkby and Currie, 2010]. Source: own calculations using data for
males and females in England & Wales aged 50-105, over the period 1971-2020.

Chen and Liu [1993] for univariate mortality indices, (ii) the approach of Galeano et al. [2006] for
multivariate mortality indices, and (iii) the approach of Kirkby and Currie [2010] for 2D smoothed
models. In each case we illustrate how these methods co-estimate parameters and outlier effects,
resulting in robust forecasts.
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Appendices
A R code to simulate outlier types
##############################################################################
#
# R script to generate pseudo-process Yt in equation (5) to illustrate the
# types of univariate outlier in Section 4 and Figure 3.
#
n = 51
set.seed(-1)
epsilon = rnorm(n, sd=0.1)
kappa = epsilon[2:n] - 0.8*epsilon[1:(n-1)]
t = 1:(n-1)

plotter = function(kappa)
{

plot(kappa, ylim=range(-1, 1), type="n")
lines(kappa, lty=1, lwd=2)

}

plotter(kappa)

# Additive outlier
kappaAO = kappa
kappaAO[30] = kappaAO[30]+1
plotter(kappaAO)

# Innovation outlier
epsilonIO = epsilon
epsilonIO[30] = 0.5
kappaIO = epsilonIO[2:n] - 0.8*epsilonIO[1:(n-1)]
plotter(kappaIO)

# Temporary change
kappaTC = kappa
index = 0:(n-30-1)
kappaTC[30+index] = kappaTC[30+index]+0.9*0.7ˆindex
plotter(kappaTC)

# Level shift
kappaLS = kappa
index = 30:(n-1)
kappaLS[index] = kappaLS[index]+0.9
plotter(kappaLS)
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B AR(I)MA models for univariate mortality indices
B.1 ARMA models for differences
From an outset year, y, we denote by κy+t the value of a univariate mortality index in year y+t, t ≥ 0.
Let {Xt} be the stochastic process of the first differences of {κy+t}, i.e. Xt = ∆κy+t.

We define an autoregressive moving-average (ARMA) model for Xt as follows:

Xt = φ1Xt−1 + . . . + φpXt−p + εt + θ1εt−1 + . . . + θqεt−q (19)
with autoregressive parameters {φi, i = 1, . . . , p} and moving-average parameters {θi, i = 1, . . . , q}.
{εt} is a white-noise process where each εt is i.i.d. N(0,σ2). Equation (19) is for an ARMA(p, q)
model without a mean. An ARMA(p, q) model for a process {Xt} with a mean µ is defined as follows:

(Xt − µ) = φ1(Xt−1 − µ) + . . . + φp(Xt−p − µ) + εt + θ1εt−1 + . . . + θqεt−q (20)
µ in equation (20) is a constant drift term and represents the long-term tendency for κy+t to change
roughly linearly, albeit with potentially long meanders around the linear trend caused by the autore-
gressive and moving-average parameters.

We further define the backshift operator, B, such that Biεt = εt−i for i ≥ 1. (B is sometimes
described as the lag operator and denoted L [Harvey, 1981, p26].) For conciseness we can define
polynomials in B as φ(B) = 1 − φ1B − . . . − φpBp and θ(B) = 1 + θ1B + . . . + θqB

q. (Different
authors use different signing conventions — see for example Martin et al. [1983, p5] — but the signing
used here is the same as used in R’s arima() function.) We can then rewrite equation (20) more
compactly as follows:

φ(B)(Xt − µ) = θ(B)εt (21)
We will concern ourselves only with stationary processes, which impose bounds on the permissible

values taken by parameters (see [Harvey, 1981, pp.28–35]). We illustrate the estimation of the pa-
rameters in equation (21) using the univariate mortality index in Table 4 and illustrated in Figure 15.
The R command in Figure 14 fits an ARMA(1, 2) model with a mean to the first differences of a
variable kappa by maximum-likelihood, where the diff() function calculates the first differences and
the arima() function fits the model. The output stage in Figure 14 shows φ̂1 as ar1, θ̂1 as ma1, θ̂2
as ma2 and σ̂2 as sigmaˆ2. Somewhat confusingly, the mean, µ̂, is labelled intercept in R’s output,
a topic we return to in Section B.2.

arima(diff(kappa), order=c(1,0,2), method="ML", include.mean=TRUE)

Coefficients:
ar1 ma1 ma2 intercept

0.7675 -1.1845 0.6189 -0.0083
s.e. 0.1688 0.1720 0.1322 0.0020

sigmaˆ2 estimated as 5.453e-05: log likelihood = 166.97, aic = -323.94

Figure 14: R command and output for fitting ARMA(1, 2) model with a mean using data in Table 4.
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Figure 15: κ̂1971+t values from Table 4.

0.18412 0.11476 0.00424 -0.17621
0.19929 0.12355 -0.00759 -0.19528
0.18853 0.11168 -0.01694 -0.19882
0.18332 0.09380 -0.03658 -0.20079
0.17802 0.08792 -0.05260 -0.21459
0.18316 0.08054 -0.06030 -0.20565
0.16383 0.06914 -0.06925 -0.21550
0.16668 0.06339 -0.09412 -0.21880
0.16434 0.04904 -0.10786 -0.22087
0.15019 0.05352 -0.12381 -0.23705
0.14077 0.02797 -0.13560
0.13771 0.02890 -0.14444
0.13148 0.01764 -0.16489

Table 4: κ̂1971+t, t = 0, 1, . . . , 48 from Lee-
Carter model with smoothed α̂x and β̂x pa-
rameters. Source: Own calculations using
ONS data for males aged 50–105 in England
& Wales, 1971–2019.

B.2 Regression ARIMA models
Equation 21 is a model for {Xt}, the first differences of {κy+t}. This is equivalent to a regression
ARIMA model for κy+t. Such models are termed REGARIMA models by Maronna et al. [2006,
p300]. The regression ARIMA model can be fitted to the kappa variable directly by specifying an
external regressor vector containing 1, 2, . . . , ny as shown in Figure 16.

ny = length(kappa)
arima(kappa, order=c(1,1,2), method="ML", xreg=1:ny)

Coefficients:
ar1 ma1 ma2 1:ny

0.7675 -1.1845 0.6189 -0.0083
s.e. 0.1688 0.1720 0.1322 0.0020

sigmaˆ2 estimated as 5.453e-05: log likelihood = 166.97, aic = -323.94

Figure 16: R command and output for fitting a linear regression with ARIMA(1, 1, 2) model for trend
deviations using data in Table 4.

A comparison of Figures 14 and 16 shows that an ARMA(p, q) model with a mean for the first
differences of {κy+t} is equivalent to a linear regression model for {κy+t} with ARIMA(p, 1, q) errors.
The drift estimate, µ̂, is labelled intercept in Figure 14, but in Figure 16 it is the coefficient of the
external regressor vector 1:ny, i.e. the slope of the assumed linear trend in κy+t. It is somewhat less
than helpful that the same drift term, µ̂, variously goes by the label ‘mean’, ‘intercept’ and ‘slope’,
but the labels stem from the model context. For example, we can re-arrange equation (21) as follows:
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Xt = µ + θ(B)
φ(B)εt (22)

If we start at κy, the t-steps-ahead forecast, κy+t, is then κy plus the cumulative sum of the next t
differences:

κy+t = κy +
t∑

i=1
Xi

= κy + tµ +
t∑

i=1

θ(B)
φ(B)εi

(23)

from which we can see that κy+t is composed of a linear trend, κy + tµ, plus the addition of a complex
ARMA error process. Thus, the mean (intercept) of the ARMA process for {Xt} becomes the slope
of the linear trend for {κy+t} in the regression ARIMA model. For a regression ARIMA(p, 1, q)
model, equation (21) can therefore be written directly in terms of κy+t as:

φ(B)(1 − B)(κy+t − µt) = θ(B)εt (24)

where µt = tµ. Note that it is common to fit ARIMA models by recasting them in state-space
form and applying a Kalman filter; see Martin et al. [1983, Section 5.1] or Harvey [1981, Chapter 3].
Indeed, once the model is in state-space form it would be possible to allow µt to vary more flexibly
in time as a full dynamic linear model [Petris et al., 2009], but this is beyond the scope of this paper.

B.3 Regression ARIMA models with outliers
We now consider the fitting of a regression ARIMA model for {κy+t} where there is contamination
with one or more outliers. Table 5 is the equivalent of Table 4 with the addition of an extra year’s
data. Figure 17 shows the outlier in 2020 caused by the first covid-19 shock in April and May 2020.

The outlier in 2020 has distorted the model fit in Figure 18 considerably, as all parameter estimates
have taken very different values compared to Figure 16. To fit a regression ARIMA model for {κy+t}
with allowance for an outlier in 2020 we define a matrix of external regressors, XREG. The first column
of XREG is the linear trend 1:ny as before, whereas the second column is an indicator variable taking
the value 1 in 2020 and 0 in all other years. Further outliers for other years can be added similarly as
additional columns for XREG. The R commands to fit this outlier-aware model are shown in Figure 19
along with the output.

In Figure 19 the estimated drift term, µ̂, now appears as XREG1, while the estimate of the additive
outlier effect of the 2020 covid-19 mortality appears as XREG2. Note that the estimates φ̂1, θ̂1, θ̂2, µ̂
and σ̂2 are little changed between Figures 16 and 19, showing that co-estimation of the outlier effect
along with the ARIMA parameters eliminates the distortion demonstrated in Figure 18.

Finally, for forecasting we need to robustify the starting point. In the case of the data in Table 5,
the cleaned value is κ̂2020 minus XREG2, i.e. (−0.1669 − 0.0631) = −0.2300.
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Figure 17: κ̂1971+t values from Table 5, showing the
outlier in 2020.

0.18483 0.11651 0.00768 -0.17030
0.19979 0.12518 -0.00398 -0.18911
0.18918 0.11349 -0.01321 -0.19261
0.18405 0.09588 -0.03258 -0.19457
0.17883 0.09010 -0.04837 -0.20816
0.18389 0.08283 -0.05598 -0.19938
0.16484 0.07160 -0.06482 -0.20906
0.16765 0.06593 -0.08932 -0.21232
0.16534 0.05181 -0.10288 -0.21436
0.15140 0.05622 -0.11862 -0.23029
0.14211 0.03106 -0.13025 -0.16691
0.13912 0.03197 -0.13898
0.13298 0.02088 -0.15912

Table 5: κ̂1971+t, t = 0, 1, . . . , 49 from Lee-
Carter model with smoothed α̂x and β̂x pa-
rameters. Source: Own calculations using
ONS data for males aged 50–105 in England
& Wales, 1971–2020.

arima(x = kappa, order = c(1, 1, 2), xreg = 1:ny, method = "ML")

Coefficients:
ar1 ma1 ma2 1:ny

0.9533 -1.6968 0.9427 -0.0024
s.e. 0.0523 0.2522 0.2176 0.0065

sigmaˆ2 estimated as 0.0001046: log likelihood = 152.4, aic = -294.79

Figure 18: R command and output for fitting linear regression with ARIMA(1, 1, 2) model for trend
deviations using data in Table 5.

ny = length(kappa)
XREG = cbind(1:ny, c(rep(0, ny-1), 1))
arima(kappa, order=c(1,1,2), method="ML", xreg=XREG)

Coefficients:
ar1 ma1 ma2 XREG1 XREG2

0.7685 -1.1850 0.6193 -0.0081 0.0631
s.e. 0.1667 0.1699 0.1309 0.0019 0.0081

sigmaˆ2 estimated as 5.184e-05: log likelihood = 171.7, aic = -331.39

Figure 19: R commands and output for fitting outlier-robustified linear regression with ARIMA(1, 1, 2)
model for trend deviations using data in Table 5.
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C Multivariate outlier detection in R
R offers an implementation of Galeano et al. [2006] in the outliers.hdts() function in the SLBDD
package. This is intended for multivariate data generated by a variety of vector ARMA (VARMA) and
vector ARIMA (VARIMA) processes, potentially with a large number of dimensions. In this appendix
we look at the performance of the outliers.hdts() function when applied to the multivariate
random walks in the CBD and TLT families of stochastic mortality models.

Galeano et al. [2006, Table 2] provides the empirical critical thresholds for eight specimen models
for time series of various lengths. One issue for actuaries are that the shortest time series tested has
50 observations, whereas typically this would be close to the maximum relevant length for actuarial
work. A second issue for actuaries is that none of the eight models tested corresponds to a multivariate
random walk with drift. Finally, the outliers.hdts() function uses a critical value derived from
the square root of a power of the upper 5% value of a χ2

1 distribution. We are therefore interested in
the performance of the outliers.hdts() function with the shorter series of fewer dimensions that
are likely to be encountered in actuarial work.

We fit M5 and M7 models to the mortality experience of males aged 50–105 in England & Wales
over the period 1971–2019. The estimated parameters of the bivariate random walk with drift for
κ̂0,y and κ̂1,y in the M5 model are:

µ̂ =
(

−0.01750290
0.000331263

)

Σ̂ =
(

5.081656 × 10−4 1.251913 × 10−5

1.251913 × 10−5 7.224136 × 10−7

) (25)

and the estimated parameters of the trivariate random walk with drift for κ̂0,y, κ̂1,y and κ̂2,y in the
M7 model are:

µ̂ =




−7.283770 × 10−3

−4.100712 × 10−4

−5.730169 × 10−7




Σ̂ =




6.811852 × 10−4 2.514202 × 10−5 5.142949 × 10−7

2.514202 × 10−5 1.321879 × 10−6 2.860279 × 10−8

5.142949 × 10−7 2.860279 × 10−8 1.239491 × 1009




(26)

We simulate the random walks with drift for a term of 50 years, first by simulating the differenced
series (the VARMA process) then calculating the cumulative sum (the VARIMA process). We then
call outliers.hdts() for both the differenced and undifferenced series using the full 50-observation
series, but also for the first 25, 30, 35, 40 and 45 values to check the function performance with
shorter series. The proportions of simulated series erroneously identified as containing outliers (the
false positives) are shown in Table 6.

Table 6 shows that the outliers.hdts() function has a radically different performance based on
whether the differenced or undifferenced series is used. The false-positive rate for the differenced series
is typically smaller than the hard-coded 5% rate, and is in fact smaller than this for mortality series
of length 40-50 years. On the basis of this limited assessment, the unmodified outliers.hdts()
function looks appropriate for application to the multivariate random walks for CBD and TLT
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Series Differenced Undifferenced
length M5 M7 M5 M7

25 4.80% 4.12% 15.44% 10.26%
35 3.97% 3.91% 15.31% 9.24%
35 3.76% 3.38% 14.86% 8.46%
40 3.09% 2.94% 14.55% 7.77%
45 3.06% 2.50% 13.98% 7.35%
50 2.97% 2.24% 13.93% 7.24%

Table 6: False-positive rates for outliers.hdts() function with hard-coded p-value of 5% in SLBDD package
with 10,000 simulated random walks with drift. For mortality work with CBD and TLT models it is therefore
better to robustify the differenced multivariate series. Source: own calculations simulating random walks
with drift specified in equations (25) and (26).

stochastic mortality models, but only when passed the differenced series. In practice, one can edit
the source code for outliers.hdts() and related functions to vary the p-value from the hard-
coded 5%. However, Table 6 shows that the false-positive rates of outliers.hdts() vary strongly,
with undifferenced bivariate random walks particularly at risk of greater false positives than the
programmed p-value implies.

Despite its restricted functional interface, the outliers.hdts() function is useful for robustifying
multivariate mortality indices. The function returns a cleaned version of the indices, which can be
used to calculate robust estimates of the forecasting parameters while also providing robustified
starting points for the forecast. Estimates of the multivariate outliers can be obtained by simply
deducting the cleaned series from the original series.
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