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Abstract

Actuaries must model mortality to understand, manage and price risk. Continuous-time
methods offer considerable practical benefits to actuaries analysing portfolio mortality experi-
ence. This paper discusses six categories of advantage: (i) reflecting the reality of data produced
by everyday business practices, (ii) modelling rapid changes in risk, (iii) modelling time- and
duration-varying risk, (iv) competing risks , (v) data-quality checking and (vi) management in-
formation. Specific examples are given where continuous-time models are more useful in practice
than discrete-time models.

Keywords: survival models, mortality shocks, selection effects, late-reported deaths.

1 Introduction
Actuaries must understand the mortality characteristics of portfolios they work on, and a key goal
of any model is that it must reflect reality. This has two facets. First, a model must not make
assumptions that contradict the data. In particular, the analyst should not have to discard data
because it is inconvenient for the model; a model should match the data, not the other way around.
Second, a model should be capable of reproducing real-world features of the risk. As we will see,
continuous-time methods have specific advantages over discrete-time models in both respects.

In their landmark paper, Forfar et al. [1988] considered three different metrics for modelling
mortality: (i) the discrete-time probability of death, qx, (ii) the central mortality rate, mx, and
(iii) the continuous-time hazard rate, µx. Of the three, mx has fallen somewhat into disuse, in
part because it does not arise as a parameter in a statistical model. The probability qx retains an
important pedagogical role for students — there is nothing simpler than the idea of mortality viewed
as a binomial trial over a fixed period like a year. However, this simplicity often collides with the
messier reality of business processes. This paper explores the practical reasons why µx is usurping qx
in actuarial work. The companion paper, Macdonald and Richards [2024], provides the theoretical
underpinning.

The plan of the rest of this paper is as follows. In Section 2 we state assumptions and define some
terms. Section 3 compares the ability of discrete- and continuous-time models to represent the data
produced by various business processes. Section 4 looks at a variety of mortality features that require
greater granularity than a one-year, discrete-time view of risk. Section 5 illustrates the greater flexi-
bility with investigation period offered by continuous-time methods. Section 6 explores the analysis
of competing decrements. Section 7 considers the uses of some non- and semi-parametric techniques
for data-quality checking, while Section 8 discusses their application for real-time management in-
formation. Section 9 discusses the results and Section 10 concludes. Appendix A contains numerous

∗stephen@longevitas.co.uk, Longevitas Ltd, 24a Ainslie Place, Edinburgh, EH3 6AJ, UK. http://orcid.org/0000-
0001-6859-6347

†A.S.Macdonald@hw.ac.uk, Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edin-
burgh EH14 4AS, UK, and the Maxwell Institute for Mathematical Sciences, UK. http://orcid.org/0000-0001-6742-1158

1



2

case studies based on actual experience. Appendix B details the difficulties that discrete-time models
have in dealing with fractional periods of exposure. Appendix C considers the conditions necessary
to avoid bias when discarding data. Appendix D provides a primer in non- and semi-parametric
methods for actuaries, while Appendix E outlines some features of grouped-count models.

2 Assumptions and terminology
We assume that we are primarily interested in the analysis of mortality, although many of the
comments apply to other decrements. Mortality is most naturally described in a continuous-time
setting1. That said, the most granular measure of time recorded in an administration system is
typically a calendar date. This means that “continuous time” is for practical purposes synonymous
with “daily”. However, while an individual can die on any date, this information may not always be
available for analysis — Case Study A.10 describes an example where only the month of death was
available, while in Case Study A.17 only the year of death was available (see Appendix A). Where
the date of death is not known exactly, deaths are said to be interval censored; the event is only
known to have occurred between two points. In Case Study A.10, the interval is a calendar month,
whereas in Case Study A.17 it is a year.

An event is an occurrence at a point in time that is of financial interest, such as a death or policy
lapse. Other events are deemed irrelevant2. Events can occur in any order consistent with physical
or procedural possibility, e.g. a pension-scheme member cannot retire after dying. Simultaneous
events are ruled out by assumption. Note that there is a distinction between an event occurring
and when (or if) that event is reported to the insurer or pension administrator; see the discussion of
late-reported deaths in Section 4.3.

A discrete-time model for mortality assumes that the life in question exists at the start of a fixed
period, such as one year, and is either alive (d = 0) or dead (d = 1) at the end of this period. No
other event is permitted, such as an earlier exit. No information is available on the time of the event
during the fixed period; we only know whether the life died, not when. Discrete-time models are
typically parameterized by q or qx. We will call such models ‘q-type models’.

A continuous-time model for mortality assumes that the life in question is aged x ≥ 0 at the start
of observation and is observed for t > 0 years. At age x + t the life is either dead (d = 1) or was
alive when last observed (d = 0); see Cases A and B in Figure 1. If other events are accommodated
by ceasing observation at age x+ t, then the observation is regarded as censored with respect to the
decrement of interest, i.e. death. A crucial distinction from discrete-time models is that we know
when the event of interest took place. Continuous-time models typically denote the risk by µ or µx.
µx was known to actuaries as the force of mortality, and to engineers as the failure rate. However,
we prefer the term hazard rate, as used by statisticians [Collett, 2003, Section 1.3]. We will refer to
such models as ‘µ-type models’.

1Mortality may be represented by an unbroken chain of infinitesimal Bernoulli trials from one moment to the next.
Macdonald and Richards [2024] describe this from an actuarial point of view

2Though we may deem other events to be irrelevant, meaning irrelevant for the application we have in mind, that
does not mean they are ignorable. We must assume that they, like mortality, are generated by some mechanism(s); for
example lapses might be governed by their own hazard rate. Then our aim can be formulated as follows: to estimate
the parameters of interest (the mortality hazard) with minimal interference from other mechanisms in which we have
no interest. For example, we would hope to be able to estimate the parameters of the mortality hazard rate without
having to estimate anything to do with the lapse hazard rate. Strictly, we ought to construct a joint model of all events
and justify such a procedure. Sometimes we are able to do so, as in a Markov model of state transition intensities
[Macdonald et al., 2018, equation (15.21)], but often this is too difficult and we have to proceed without the comfort
of any formal justification. See also Arjas and Haara [1984].

2



3

Figure 1: Timelines for various annuitant cases with usable exposure time, t, marked in grey. Case A is a
survivor administered on the system from the annuity commencement date to the extract date. Case B is an
annuity administered on the system from outset, but where death has occurred prior to the extract date. Case
C represents an annuity administered on the system until either commutation, transfer to another system
or transfer to another insurer. Cases D and E are annuities that were set up on another system or insurer at
outset and subsequently transferred onto the current system. Cases with d = 0 are all right-censored with
respect to mortality.
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The most common type of censoring is where all that can be said is that death had not been
reported at the last point of observation, known as right-censoring. Examples of right-censoring
points include the date of extract, the date of transfer out or the date of trivial commutation; in
each case, the life under observation was not reported to have died at the point of last observation.
Cases A, C and D in Figure 1 are examples of right-censored observations. There are two sub-
types of right-censoring: (i) ’obligate’ right-censoring, where observation ceases at a point in time
known in advance, and (ii) random right-censoring, where observation ceases at a point in time not
known in advance. The distinction becomes important when the analyst decides to discard data; see
Appendix C.

The start of an observation period for a life is qualitatively different from the end of the observation
period. In actuarial work, most policyholders only become known to the portfolio well into their
adult life; Figure 2 shows the distribution of age at commencement for annuities set up with a French
insurer, where almost nobody enters observation before age 55 (an exception is shown in Figure 18).
This is left-truncation, where the mortality of those not entering observation is by definition unknown.
Left-truncation is a central feature of actuarial survival analysis, in contrast to, say, medical analysis
[Collett, 2003]. Left-truncation arises naturally, such as when a policy first commences or retirement
commences (Section 3.2). However, left-truncation can also be introduced by business processes (such
as the system migrations discussed in Section 3.3) and deliberate analyst decisions (such as described
in Section 5).

Figure 2: Histogram of age last birthday at annuity commencement date. Source: 298,906 annuities for a
French insurer.
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We assume that we have data on individuals. If we have data on benefits or policies, we will
first need to create records for individual lives through a process of deduplication; see Macdonald
et al. [2018, Section 2.5]. Deduplication is not merely a prerequisite for the independence assumption
underlying statistical modelling, but it also results in a better understanding of risk and can even save
money; see Case Study A.1 in Appendix A for an example. Note that having data on individual lives
does not presuppose that we must model their risk individually, although this is desirable. However,
extracting individual records does enable detailed validation and checking [Macdonald et al., 2018,
Sections 2.3 and 2.4].

The above descriptions of q- and µ-type models assume the modelling of individuals for simplicity.
However, the analyst also has the option to model grouped counts by allocating individuals to groups
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and computing appropriate aggregate death counts and exposure measures; see Macdonald and
Richards [2024, Appendix 1], especially Figure 4, for the details of the splitting of the individual
observations and assigning them to rate intervals. The advantages and disadvantages of grouped-
counts modelling are discussed in Macdonald et al. [2018, Section 1.7].

Time periods are often expressed in years. A practical issue is that the difference between two
dates is a number of days, but calendar years do not always have the same number of days. Macdonald
et al. [2018, p.38] standardise by dividing the number of days between two dates by 365.242 to account
for leap years (Richards [2012, Table 15.1] gives a value of 365.24219 days for the astronomical cycle
for the year 2000).

One question is how to handle dates at the start and end of a period of time. We adopt a policy
of assuming that an interval starts at mid-day on the start date and ends at mid-day on the end date.
For example, this means that the interval from 1st-31st January 2024 is taken to be 30 days long
(30 = 31 − 1) and not 31 days. This allows us to subdivide intervals without double-counting, e.g.
the interval from 1st-16th January 2024 is 15 days long and the interval from 16th-31st January 2024
is 15 days long. Intervals that start and end on the same date have zero length and are excluded from
analysis. A death at the end date is assumed to happen at mid-day. Thus, if the exposure period is
1st-31st January 2024 and d = 1, then we have 30 days of exposure terminated with a death.

3 Reflecting reality: business processes
A fundamental assumption of a q-type model is that we should be able to observe each individual
for a complete year, with the sole exception of their death occurring before the year-end. Otherwise,
the complete year may not be interrupted by any right-censoring events, such as lapsing or the end
of the investigation.

Pensions and annuities in payment are nominally a single-decrement risk, i.e. the only way they
are supposed to cease is through the death of the recipient. On the face of it, this matches the q-type
model in theory. However, in the following examples we will see that q-type models often do not
match the reality of business practices, and that µ-type modelling is a more natural choice.

3.1 Bulk transfers out of a portfolio

Portfolios can experience mid-year transfers out en masse. Examples include a transfer of annuities
to another insurer, the purchase of buy-out annuities in a pension scheme or transfer to another
administration system. Figure 3 shows an example for a UK annuity portfolio, where a large block
of annuity contracts was moved to another insurer in a Part VII transfer [FSM, 2000, PartVII].

Mid-year exits like in Figure 3(a) are a problem for q-style models. They violate the assumption
that there is no other possible event besides death or survival to the end of the year. In contrast,
mid-year exits pose no problem for modelling in continuous time — the transfer out date is the date
of last observation, and the indicator variable is set d = 0 to signify that the life was alive at that
date. See Case C in Figure 1, and Case Studies A.1 and A.4 in Appendix A.

3.2 New business

In addition to mid-year exits, most pension schemes and annuity portfolios also add new liabilities.
These can be due to new retirements or spouse’s annuities set up on death of the first life. It is
also possible to have a mass influx of new pensions, such as a pension scheme seeing a wave of early
retirements due to corporate restructuring. Figure 4 shows an annuity portfolio where new cases are
added at the start of each month and where there was a surge in new business in December 2014.

If an analyst is modelling q-type rates aligned on calendar years, then any new records added
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Figure 3: (a) Number of in-force annuities and (b) average age of in-force annuities at each date for a UK
insurer. The discontinuities in late 2013 are caused by a transfer of liabilities to another insurer. New
annuities are set up on any day, hence the seemingly continuous nature of the in-force annuity count at
other times. Source: own calculations using experience data for all ages, January 2012–December 2014.
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Figure 4: (a) Number of in-force annuities and (b) average age of in-force annuities at each date for a French
insurer. The discontinuity in December 2014 was caused by a surge in new business. New annuities are set
up on the first of the month, hence the stepped pattern of the annuity in-force count. Source: experience
data for all ages, January 2013–December 2015.
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during the year must be excluded from the model data set because a complete year of exposure is
not possible (see Appendix B for the detailed reasoning underpinning this statement). In contrast,
all new-business records can be used in a continuous-time model; see Case Study A.8 in Appendix A.

3.3 Bulk transfers into a portfolio

For every bulk transfer out of one portfolio in Section 3.1 there will be a corresponding bulk trans-
fer in to another portfolio. Examples include an insurer receiving a Part VII transfer, an insurer
writing a large bulk annuity, or an administration system receiving migrated records from another
administration system. This is like the new business in Section 3.2, but with the added complication
that the receiving system will be missing deaths between annuity commencement and the transfer-in
date. This is of course a challenge for q-type models in the same way as for new business, but it is
not a problem for continuous-time methods — see Cases D and E in Figure 1 and Case Study A.13
in Appendix A.

3.4 Commutations and temporary pensions

Even if a portfolio experiences no mass transfer out, it is still possible for individual liabilities to cease
for a reason other than death. In the UK, pension benefits below a certain size can be commuted into
a taxable lump sum. Administration expenses are largely fixed in nature, so the facility to commute
small pensions saves disproportionate costs. However, this again means that the pension ceases for
a reason other than the death of the recipient. Figure 5 shows the impact of this — although the
number of lives in each size-band is the same, the time lived is much reduced for the smallest size-
band due to non-death early exits. The number of observed deaths is correspondingly much reduced,
as post-commutation deaths are of course unknown to the insurer.

Figure 5: (a) Deaths and (b) time observed in each pension size-band, showing the reduced exposure for the
smallest pensions. Source: own calculations using experience data for Scottish pension scheme, ages 50–105,
years 2000–2009. Pensioner records were sorted by pension size and grouped into twenty bands of equal
numbers of lives (vigintiles). Size-band 1 represents the 5% of pensioners receiving the lowest pensions, while
size-band 20 represents the 5% of pensioners receiving the largest amounts.
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There are other ways for pensions to cease for a reason other than death. In Richards et al.
[2013] a multi-employer pension administrator in Germany had (i) temporary widow(er) pensions,
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(ii) widow(er) pensions ceasing on remarriage and (iii) disability pensions ceasing due to a return to
work. In the Chilean national pension system, spouses’ pensions also cease upon remarriage. Some
UK pension schemes grant pensions to ‘surviving adults’ that can be terminated on remarriage or
cohabitation with another person[TPS, 2010, 94(6)].

Commutations and temporary pensions pose a problem for q-style models of mortality. One
option is to exclude such cases, but this depends on them being clearly identified as such; see Case
Study A.9 in Appendix A. Another issue is the need to exclude any corresponding deaths — trivial
commutations are not always processed immediately, which means it is possible for a commutation-
eligible pensioner to die first. Appendix C shows how discarding lapsed cases leads to a bias in
mortality estimation. Discarding such data is therefore to be avoided.

In contrast, commutations and temporary pensions do not pose any kind of problem for models in
continuous time — the commutation date is the date of last observation, and the indicator variable is
set d = 0 to signify that the life was alive at that date. See Case C in Figure 1 and Case Studies A.1
and A.4 in Appendix A.

3.5 Representation of data

In all the foregoing examples, non-death exits and mid-year entries are handled more easily by
modelling in continuous time. This allows for simpler data preparation and corresponds more closely
to the realities of the business processes than q-type models. To illustrate, we assume that we have
a data extract from a pension or annuity administration system. For each record we calculate the
data pair {di, ti} as follows. ti is the real-valued time observed in years between the on-risk date and
the off-risk date. The on-risk date is the latest of: (i) the annuity commencement date, and (ii) the
transfer-in date (if any). If the transfer-in date is not known exactly, a suitable proxy date can be
used, such as the date of first payment made on the system; see Case Study A.13 in Appendix A.
The off-risk date is the earliest of: (i) the date of extract, (ii) the date of death (if dead), (iii) the
date of commutation (if commuted), and (iv) the date of transfer out (if any). If the transfer-out
date is not known exactly, a suitable proxy can be used, such as the date of last payment made on
the system; see Case Study A.4 in Appendix A. The indicator variable is set di = 1 if the off-risk
date is the date of death and di = 0 otherwise. This is depicted graphically in Figure 1.

Macdonald et al. [2018, Section 2.9.1] give an expanded consideration to include analyst-specified
limits, such as minimum and maximum ages, modelling start and end dates and rules for excluding
suspicious records. All of these are more easily handled in µ-type models than with q-type models.

4 Reflecting reality: risk features
q-type methods are by definition unable to model mortality phenomena that take place over a shorter
time frame than the fixed period they span. In contrast, continuous-time methods can better reflect
rapidly changing phenomena, as demonstrated in the following sub-sections.

4.1 Mortality shocks

The covid-19 pandemic [The Novel Coronavirus Pneumonia Emergency Response Epidemiology
Team, 2020] produced intense spikes in mortality in a number of countries. This is reflected in
the portfolio data that actuaries analyse; see the examples for annuity portfolios in France, the UK
and the USA in Richards [2022b]. The first covid-19 shock in the UK was in April & May 2020, and
the intensity of this two-month mortality shock cannot be captured with annual or even quarterly
q-type rates. In contrast, continuous-time models can reveal rich detail. Figure 6 shows an example,
where the first covid-19 shock is detected in April & May 2020 with seasonal variation in the years
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beforehand. Underlying Figure 6 is a B-spline basis with knots at half-year intervals to pick up the
substantial seasonal variation. In addition, a priori knowledge of population mortality shocks led to
the addition of further B-spline knots in the first half of 2020, thus giving a basis of varying flexibil-
ity over time (there is no requirement for a B-spline basis to always have equally spaced knots; see
Kaishev et al. [2016]). The result is a model for µx that allows mortality to vary smoothly over time,
with periods of faster and slower change. Such detail is impossible with an annual q-type model.

Figure 6: Mortality level over time for a UK annuity portfolio, where modelling in continuous time allows
rich detail to be identified. The mortality level is standardised at 1 in October 2019. Source: Richards
[2022c].
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4.2 Period effects and selection

Figure 7 shows the deviance residuals [McCullagh and Nelder, 1989, Section 2.4.3] for a second
portfolio of UK annuities. The model includes age and sex, and the random pattern of residuals by
age suggests that the model is an acceptable fit for age-related mortality. However, the non-random
patterns of residuals in time and duration suggest that it is also important to allow for both a period
effects and selection effects.

Figure 7: Deviance residuals by age, year and duration since commencement. The systematic pattern of
residuals in the centre and right panels show that both time and duration are important risk factors for
mortality, and should both be included in a model. Source: own calculations for model for age and sex for
second UK annuity portfolio, ages 60–95, years 1998–2006.
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A drawback of a one-year q-type model is that it is limited in how it can handle time-varying risk,
especially when there are two or more time dimensions. This is due to the requirement to align the
one-year intervals, as shown in Figure 8 for period effects and duration effects. This limitation of q-
type models improves a little if one of those risk factors is handled continuously (usually age). To see
this, assume for simplicity that the basic mortality model is parametric, like qx = eα+βx/(1 + eα+βx)
or µx = eα+βx. In each case we have a function defined for any real age, x, not just integer ages.
We can also align the period effects on the calendar years, say by assuming that α is a function
of calendar time, for example piecewise constant on calendar years. Since we have a function for
mortality at any real age, x, the fact that lives are at different ages during each year is not an issue
for either the qx or the µx model.

Figure 8: When policies can start at any point during the year, qx models can either include annual period
effects or selection effects, but not both. For example, a period effect for 2021 requires a full year of exposure
for survivors, so only Case A can contribute. However, the splitting of the exposure at annual boundaries
means that different curtate durations are exposed, thus excluding the modelling of selection effects as well.
The converse also applies.
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However, how can the qx model accommodate selection effects for annuities commencing in the
middle of the year? A one-year interval can either be aligned for annual period effects, or it can be
aligned for selection effects, but it cannot be aligned for both. This is shown in Figure 8. In contrast,
the µx model can simultaneously model period and duration effects without such restriction. Of
course, one could reduce the period covered by the qx model to, say quarter-years. But if the answer
is to reduce the fixed period covered by a q−type model, why not go all the way and reduce the
interval to daily modelling?

The problem of multivariate time scales is covered in detail in Andersen et al. [1993, Chapter X].
See also Case Study A.8 in Appendix A.

4.3 Occurred-but-not-reported (OBNR) deaths

One other useful aspect of continuous-time analysis is the ability to examine delays in the reporting
of deaths. Lawless [1994] describes this as the problem of occurred-but-not-reported (OBNR) events,
and Kalbfleisch and Lawless [1991] consider parametric models for estimating the distribution of
delays. Section D.5 in Appendix D describes the calculation of a semi-parametric estimator of the
portfolio-level hazard in continuous time. Assume that we have two estimates of the mortality hazard
at the same point in time y + t. These two estimates are labelled µ̂y(t, u1) and µ̂y(t, u2), and they
differ only in that they have been calculated using data extracts taken at two different times u1 < u2.
Then µ̂y(t, u1) will be more affected by delays in the reporting of deaths than µ̂y(t, u2), with the
effect decreasing the further y + t lies before u1. Figure 9 shows the ratio of µ̂y(t, u1)/µ̂y(t, u2) as an
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estimate of the proportion of deaths that have not been reported. The two portfolios have minimal
OBNR cases half a year or more before time u1, but have very different OBNR rates in the handful
of months leading up to the extract. This level of insight is not possible with annual q-type analysis.

Figure 9: Estimated proportion of deaths reported for annuity portfolios in France and UK. The horizontal
axis is reversed, as it measures the time before the first extract at calendar time u1. Source: Richards [2022b,
Section 4].
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Continuous-time methods go further than the identification of reporting delays in Figure 9. In-
cluding a period affected by OBNR deaths will naturally tend to under-state mortality levels, which
is one reason to discard the exposure period immediately prior to the extract date; Figure 9 sug-
gests that six months should be discarded for the French annuity portfolio and three months for
the UK one. However, continuous-time models make it possible to model these OBNR deaths and
thus use the full experience data, even up to the date of extract itself. This OBNR allowance can
be either parametric [Richards, 2022b, Section 5] or semi-parametric [Richards, 2022c, Section 10].
Richards [2022b, Section 7] showed how the use of daily data and continuous-time methods allowed
the “nowcasting” of current mortality affected by late-reported deaths. These sorts of techniques are
not possible with annual q-type approaches. See also Case Study A.15 in Appendix A.

4.4 Season

Annual q-type rates are by definition unable to model the seasonal variation shown in Figure 6. The
mortality hazard rises overall as the lives age, but with fluctuations as the lives pass through the
seasons of each year. The amplitude of these fluctuations grows larger with increasing age.

As a periodic factor, season has the unusual distinction of being both highly statistically significant
in explaining mortality variation, and yet of low financial significance for long-term business [Richards,
2020, Section 9]. Nevertheless, accounting for seasonality can be useful in separating out the impact
of pandemic shocks, and can help quantify the extent to which a heavy winter flu experience is
unusual. Seasonal modelling has applications for public-policy work, such as the observation that
poorer annuitants not only have higher mortality, but also experience stronger seasonal variation, as
shown in Figure 10. Models of seasonal variation can also be useful in commercial situations, such
as Case Studies A.5, A.7 and A.12 in Appendix A.
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Figure 10: Modelled cohort mortality hazard for males initially aged 70 at 1st January by selected income
quintile. Source: model calibrated to mortality experience of large UK pension scheme in Richards et al.
[2020].
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5 Investigation period
The investigation period will be set by the analyst, and there may be specific organizational policies
for this. In setting the investigation period, the analyst needs to balance the benefits of statistical
power (from using a longer period) against relevance (such as when mortality levels have been falling
or the portfolio mix is rapidly changing); see Benjamin and Pollard [1986, page 49]. For example,
ONS [2024] use population experience data over a three-year period to create the UK National Life
Tables, while some life offices have a policy of using five-year period to set bases. Other investigations
use longer periods of exposure still.

Specifying an investigation window causes additional left-truncation and right-censoring, as shown
in Figure 11; in addition to the life only becoming known to the insurer at an adult age at policy
outset (standard left-truncation) the analyst further discards the experience from policy outset to
the start of the investigation window. Case Study A.18 in Appendix A concerns an annuity portfolio
with uninterrupted experience data on the same administration system since outset. Despite the
availability of decades of experience, the analyst would most likely only use the more recent data due
to reasons of relevance. However, the length of the investigation period may also be limited by the
data itself — Case Studies A.5 and A.7 in Appendix A are examples where the analyst has no scope
for using a five-year investigation period.

Most investigation periods also span a whole number of years, in part to balance out the seasonal
fluctuations in mortality; see Figure 10 and years 2016-2019 in Figure 6. However, if a model includes
an explicit seasonal term [Richards et al., 2020], then there is no need to worry about any bias caused
by unbalanced numbers of summers and winters. This permits µ-type models to have an investigation
period of a non-integer number of years if a seasonal component is included; see Case Studies A.5
and A.7 in Appendix A.

The ability to use fractional numbers of years in an investigation extends particularly to trans-
actions such as bulk annuities. Pension schemes in the UK sometimes change administrators, which
invariably leads to the loss of mortality data prior to the switchover. If a pension scheme can only
supply 2.5 years of mortality experience, then the insurer will not want throw away a fifth of the
information just because a GLM for qx can only use whole periods (although a q-type model is
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Figure 11: An analyst wants to fit a Gompertz model of mortality to the experience between ages 60–90 over
the period 1st January 2018-1st January 2023. An extract is taken of the data on 14th March 2024 and some
specimen cases are shown in this Lexis diagram with exposure times in gray and deaths are marked with ×.
(a) Raw experience data and (b) experience data within the analyst’s window superimposed. Individual A
died on 20th July 2023, but is right-censored at the end of the investigation period and so is regarded as alive
in the analysis. Individual A’s exposure time to the left of the window is also left-truncated. Individual B
died before the investigation window opened and is excluded from the analysis. Individual C is also excluded
from the analysis because they never reach the age range within the investigation period.
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still possible if one does not use a GLM; see Appendix B). Any concerns about delays in reporting
of deaths can be addressed in a µ-type model by including an explicit occurred-but-not-reported
(OBNR) term; see Richards [2022b, Section 5].

At the time of writing, most portfolios will still have recent mortality experience affected by
covid-19; see the spike in mortality in April and May 2020 in Figure 6. µ-type models can allow for
such spikes in the experience [Richards, 2022c] in a way that q-type models cannot. However, another
alternative to avoiding bias might be to exclude the affected period, although this presupposes that
the covid-affected experience is an additive outlier with no relevance to later mortality. For a qx
GLM this involves discarding an entire year’s worth of data, despite the fact that the shock in Figure
6 only lasts around two months (although, as before, a q-type model is still possible if one does
not use a GLM). In contrast, µ-type models can more easily handle the ad hoc exclusion of short
periods of experience, if the analyst feels that this is truly necessary. Macdonald and Richards [2024,
Section 4.3] show how both left truncation and right censoring can be handled by setting an exposure
indicator function, Y (x), to zero to ‘switch off’ the contribution of exposure time and observed deaths
to estimation. Y (x) is a multiplier of µx, and to exclude the contribution of covid-affected experience,
one could also set Y (x) = 0 for the period of any mortality shocks.

6 Competing decrements
A limitation of q-type models is that they assume that only two events are possible: survival to the
end of the observation interval, or death during it. Even with notionally single-decrement business
like pensions or annuities in payment, Section 3 shows that the business reality is that there are often
other decrements like administrative transfers or trivial commutations.
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However, the situation for q-type models becomes worse with classes of business that have multiple
modes of exit by design. Consider the data in Case Study A.32, where there are two decrements
of interest: death and entry into long-term care. n = 42 lives start exposure at age 88, with
dmort = 5 dying and dcare = 3 entering long-term care before reaching age 89. Due to these exits and
other censoring points there are Ec = 36.9039 years of life observed in the age interval [88, 89). With
continuous-time modelling, the number of deaths and care events can be modelled as separate pseudo-
Poisson variables [Macdonald and Richards, 2024], which lead to the same inference as assuming that:

dmort ∼ Poisson(µmortEc), and (1)

dcare ∼ Poisson(µcareEc) (2)

where µmort and µcare are the hazards for mortality and long-term care, respectively. In contrast,
q-type modelling has little theoretical support beyond binomial trials, which don’t permit multiple
types of event. The classical actuarial approach is to try and create an artificial single-decrement
equivalence by reducing the number of lives:

dmort ∼ Binomial(qmort, nmort), and (3)

dcare ∼ Binomial(qcare, ncare) (4)

where qmort and qcare are the probabilities of mortality and long-term care, respectively. nmort and
ncare are pseudo-life-counts, both less than n. It is traditional to use an approximation like the
following from Benjamin and Pollard [1986, equation (2.1)]:

nmort ≈ n− 1

2
dcare, and (5)

ncare ≈ n− 1

2
dmort (6)

The lack of rigour with the q-type approach to competing decrements can be seen when we apply
it to our example:

nmort ≈ 40.5, and (7)

ncare ≈ 39.5 (8)

But what is 0.5 of a binomial trial? Half a person? The binomial likelihood can still be evaluated
and maximised for non-integral values for the number of trials, but the q-type models in equations (3)
and (4) clearly do not correspond to reality.

See also Case Studies A.30, A.31 and A.32 in Appendix A.

7 Data quality checks
Continuous-time methods also offer better checks of data quality. We look at how data issues can be
revealed by a non-parametric estimate of survival by age, and a semi-parametric estimate of mortality
hazard in time.
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7.1 Non-parametric survival curve by age

The estimator from Kaplan and Meier [1958] estimates the survival curve at intervals determined by
the time between deaths (the definition from Fleming and Harrington [1991] does something very
similar). In the case of many actuarial portfolios, this interval is often as small as one day, making
the Kaplan-Meier estimate effectively a continuous-time measure; see Section D.1 in Appendix D.
An example is shown in Figure 12(a).

Figure 12: Kaplan-Meier survival curves from age 60 for (a) the Scottish pension scheme in Figure 5 and
(b) a UK annuity portfolio. The odd shape of the survival curve for the UK annuitants, and the lack of a
male-female differential between ages 60–80, suggests a data-corruption problem like the one described in
Case Study A.6 in Appendix A. Source: Macdonald et al. [2018, Figure 2.8].
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The value of the Kaplan-Meier estimate as a data-quality check is shown in Figure 12(b), where
the odd shape and the lack of a male-female differential between ages 60 and 80 suggests a data-
quality problem. Case Study A.6 in Appendix A describes a possible cause. Note that this sort of
problem is trickier to detect with a traditional comparison of mortality against a standard table,
and the visual nature of the Kaplan-Meier estimate is a major advantage when communicating with
non-specialists. See also Case Studies A.2 and A.3 in Appendix A.

7.2 Semi-parametric hazard over time

Richards [2022b] proposed a semi-parametric estimate for the mortality hazard of a portfolio over
time, and the details of its calculation are given in Section D.5 in Appendix D. Figure 13(a) shows
the seasonal variation in a Scottish pension scheme, with particularly high mortality in the winter
of 2002-2003. In contrast, the much larger Canadian pension plan in Figure 13(b) shows seasonal
variation only from 2016 onwards, raising questions about the data quality in 2014 and 2015. Closer
inspection of the Canadian mortality reveals that deaths are recorded continuously throughout the
year, but that the first of each month has disproportionately more deaths than other times during
the same month. This suggests an inconsistent approach to the recording of the date of death; see
also Case Study A.15 in Appendix A. Detailed inspection showed that this data anomaly is present
throughout the entire period shown in Figure 13(b), but it is more dominant in 2014 and 2015 and
thus more visually apparent.
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Figure 13: Estimated aggregate hazard in time for (a) the Scottish pension scheme in Figure 5 and (b) a
Canadian pension plan with more lives and deaths. The Canadian pension plan is missing the expected
seasonal pattern in 2014 and 2015, raising questions over the accuracy of the experience data during that
period. Source: adapted from Richards [2022b, Figure A.2].
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The mortality spike in the winter of 2002–2003 in Figure 13(a) raises a question: why would one
exclude covid mortality spikes, when such seasonal spikes have typically been left in?

8 Management information
A major advantage of continuous-time methods is their ability to give timely and ongoing answers
to management questions. For example, consider the surge in new business shown in December 2014
in Figure 4(a). The average age at commencement of the 9,570 new annuitants in December 2014
is 60.75 years. This is close to the average age at commencement of 61.34 years for the 9,033 new
annuitants in the six months before and after December 2014. Although the commencement ages are
very close, a natural management question is whether the mortality of the December 2014 annuitants
is different from other recent new business. Figure 14 shows that this is indeed the case, with the
December 2014 annuitants experiencing lighter mortality than their contemporaries. The statistic
used here is the Nelson-Aalen estimate of equation (18) (see Section D.2), which can be updated
continuously without waiting for a complete year of exposure as with a a q-type analysis; Figure 14
could be updated weekly, for example. This is a critical advantage when entering a new market; see
Case Study A.8 in Appendix A.

Of course, the phenomenon of OBNR deaths discussed in Section 4.3 is a challenge for any methods
using current data. However, as shown in Figure 9, continuous-time semi-parametric methods can
also be used to estimate the timing and incidence of OBNR. If need be, graphs such as Figure 14 can
be adjusted to allow for OBNR. This is analogous to the econometric techniques called “nowcasting”
[Bańbura et al., 2013], where the most recently available information is used to estimate the current
value of a statistic that won’t be fully known until sufficient time has elapsed. This is illustrated in
Figure 15(a), where the June 2020 data extract shows no sign of the pandemic mortality expected in
April & May 2020. An allowance for OBNR allowed a “nowcast” of mortality, as shown in Figure 15.
A later data extract used in Figure 15(c) shows that the OBNR-adjusted “nowcast” in panel (b) was
accurate enough for business planning at the time it was made.
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Figure 14: Nelson-Aalen estimate, Λ̂(t), of cumulative mortality rate for new business written (i) in December
2014, and (ii) in the six months on each side of December 2014 . Source: own calculations using new annuities
written by the French insurer in Figure 4.
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Figure 15: µ̂2019(t) for French annuity portfolio with c = 0.1: (a) calculated using June 2020 extract; (b)
nowcast using Gaussian OBNR function estimated from June 2020 extract; (c) calculated using August 2021
extract. The vertical dotted line in each panel is at 1st April 2020.
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9 Discussion
The problems of single-decrement q-type models in Section 3 can be partially solved by discarding
some records and editing others. However, throwing away data is a luxury that not every analyst
can afford; see Case Studies A.5 and A.7 in Appendix A. Furthermore, modifying the data to suit
the needs of the model is surely the wrong direction of causality — a model should be picked that
suits the data, not the other way around. As shown in Section 3, continuous-time methods are a
better match to the reality of business processes on most administration systems.

The challenges of q-type models in Section 4 can be addressed by reducing the fixed observation
period to a quarter-year, or even a month. However, if the answer is to increase granularity, why not
use the full detail afforded by the data, namely daily intervals? Administration systems hold lots of
dates, which are a natural fit for continuous-time methods.

Alternatively, q-type models can be fitted using bespoke likelihoods for fractional years of expo-
sure, as covered in Appendix B. However, if the analyst is able to do this, then a µ-type model will
be more flexible and require less data preparation.

Individual records and exact dates allow the use of insightful non- and semi-parametric methods,
as shown in Section 7. The Kaplan-Meier curve is a particularly useful tool for detecting subtle data-
quality problems. And if one is anyway extracting individual records for data-checking, it makes sense
to continue by modelling individual lifetimes if one can. The continuous-time representation attempts
to describe these left-truncated, right-censored lifetimes as they really are (and presumably good
business data processes share that aim to some extent). In contrast, the discrete-time representation
for q-type models works the other way, and attempts to force nature (and the data) to look like a
life table.

Figure 16 depicts the main categories of data loss between reality on the left and what the analyst
has to work with on the right. There is not much that can be done about the middle sources of data
loss: if records have been deleted or destroyed, they are unavailable to any type of model. However,
µ-type models can deal with OBNR deaths better than q-type models, and less data is discarded
with continuous-time methods than discrete-time ones.

Figure 16: Cumulative loss of mortality data in a portfolio.
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10 Conclusions
Methods operating in continuous time, or in daily intervals, offer substantial advantages for actuaries.
Chief among these are the ability to reflect the reality of everyday business processes, and the ability
to handle rapid changes in risk level. In contrast, q-type models, especially those operating over a
one-year interval, make assumptions about the data that are often not true in practice, and often
require data to be discarded. In addition, annual q-type models are unable to reflect rapid intra-year
movements in risk.

Continuous-time methods are also the more-practical solution to certain modelling problems. Ex-
amples include risks varying in more than one time dimension and modelling risks with competing
decrements. In contrast, annual q-type models within a GLM framework are not capable of simul-
taneously modelling time- and duration-varying risk. For competing risks, q-type models force the
pretence that the number of lives is smaller than it really is.

Continuous-time methods also offer useful data-quality checks. The visual nature of non- and
semi-parametric methods make them particularly useful for communication with non-specialists.

There are occasional circumstances when daily information is unavailable, or even deliberately
withheld, but actuaries should strive wherever possible to collect full dates and use continuous-time
methods of analysis.
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Appendices

A Case Studies
The following are case studies are based on actual experience. In most case studies, continuous-time
methods provided important benefits over q-type models.

Case Study A.1

The Pension Benefit Guaranty Corporation (PBGC) in the United States charges a flat annual fee
of $37 per participant in a pension plan in 2024, rising to $52 in 2031 [PBG, 2024, Table M-16]. To
minimise payments to the PBGC, a pension plan therefore buys annuities to close out the liabilities
for the individuals with the smallest pensions. The pensions that are bought out are treated like
commutations, with the observation end date being the date of annuity purchase.

A continuous-time model can include the bought-out annuities, as they will be like Case C in
Figure 1. Note that the PBGC fee is per participant, so there is a financial benefit from identifying
multiple records relating to the same person among retained cases; see the discussion of deduplication
in Macdonald et al. [2018, Section 2.5].

Case Study A.2

A consulting actuary is asked by a reinsurer to set a pricing basis for a longevity swap. However, the
Kaplan-Meier curves for males and females exhibits a pattern like that of Figure 12(b), suggesting
that the data are corrupted. The consultant informs the reinsurer, which asks the cedant for better-
quality data. The cedant refuses, and the consultant recommends that the reinsurer walks away from
the transaction, which it does.

Case Study A.3

A consulting actuary is asked by the sponsoring employer of a pension scheme to validate the mortality
basis used for funding calculations. The consulting actuary calculates the Kaplan-Meier curves for
males and females and, like Case Study A.2, finds a pattern like that of Figure 12(b), suggesting that
the data are corrupted. The third-party pension-scheme administrator is ordered to implement a
data clean-up programme, which produces better data and thus allows a reliable basis to be derived.

Case Study A.4

The insurer of the annuities in Figure 3 needs to set a mortality basis for the year-end valuation in
2015. A simple multi-year comparison against a standard table is inappropriate, as Figure 3(b) shows
that the transferred annuities are not a random sample of the overall portfolio. A q-type analysis
is complicated by the exit from observation of 60,000 annuities during 2013. A better solution is a
µ-type analysis, using the date of the last annuity payment on the system as a proxy for the date of
right-censoring. This allows both transferred and remaining annuities to receive the same treatment
as Cases A and B in Figure 1. Such a solution works best for annuities paid relatively frequently,
e.g. monthly.

Case Study A.5

An actuary is tasked with setting a mortality basis for a large annuity portfolio. Eighteen months
before the actuary’s appointment, annuities in payment were migrated to a new administration plat-
form and records of prior deaths were lost. The actuary only has one-and-a-half years of experience
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data. Annuities set up before the migration are therefore like Cases D and E in Figure 1, whereas
newer annuities set up post-migration would be like Cases A and B.

The portfolio has scale in terms of the number of annuities, but it has no depth in terms of
historic data. Using an annual q-type GLM makes this depth problem even worse: the requirement
for a complete year of potential exposure means discarding a third of what little historical data is
available. The most recent half-year of experience would be discarded in order not to have mortality
levels under-stated due to delays in reporting of deaths. Much of the new business written would
therefore also be excluded from q-type analysis, robbing the actuary of information on possible
selection effects.

In contrast, a continuous-time solution is to model µx and use all eighteen months of data,
including the new business. Delays in reporting of recent deaths could be handled either by using a
parametric OBNR term [Richards, 2022b] or using the approach of Richards [2022c], as illustrated
in Figure 17. In the latter case, the level of mortality to use for a long-term purpose like valuation
would have to be decided by judgement, say by picking the modelled (and thus smoothed) mortality
level mid-way between a winter peak and a summer trough.

Figure 17: Mortality multiplier over time for French annuity portfolio, with multipliers standardised at 1
for October 2009. The data extract was taken in min-2010, and the impact of reporting delays (OBNR) is
very pronounced.
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Case Study A.6

A pricing analyst is looking for risk factors to use for annuitant mortality. One of the data fields
available is whether an annuity has an attaching spouse’s benefit, i.e. a contingent annuity that
commences on death of the first life. Statistical modelling suggests that the presence or absence of a
spouse’s benefit is highly significant, and has a mortality effect on a par with the sex of the annuitant.
The direction of the effect is plausible, with single-life annuitants exhibiting higher mortality [Ben-
Shlomo et al., 1993].

However, the analyst is aware of the potential for record corruption from Case Study A.2. Specif-
ically, if the main annuitant dies and the spouse is then discovered to have pre-deceased them, the
record of the contingent benefit might be removed during death processing. This would make the
annuity look like a single-life annuity from outset, and thus distort the apparent mortality differen-
tial. The analyst emails the IT department with his concerns and is told that they are unfounded.
Skeptical, he makes a further telephone enquiry and is again assured that the feared corruption is
not present.
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Believing that he may have found an important new risk factor for pricing, the analyst writes
a note to the chief actuary. The analyst then remembers that these quality assurances come from
the same IT department that lost all the mortality data in Case Study A.5. The analyst performs a
third investigation, and discovers that his original suspicions were correct. The excess mortality for
single-life annuitants has been grossly exaggerated by the deletion of pre-deceased spouse records.

Case Study A.7

An insurer with a large annuity portfolio has an administration system that automatically deletes
records of annuitants who died more than two years in the past. Annuities are set up like Cases A
and B in Figure 1, but after two years a Case A annuity becomes like Case D, while Case B annuities
simply disappear from the administration system entirely. An urgent request is made to stop this
rolling deletion of valuable data.

Similar to Case Study A.5, an annual q-type GLM only permits the use of a single year of data
— the most recent six months are ignored due to late-reported deaths, leaving 1.5 years of data, but
a further half-year of unaffected data also has to be discarded to meet the requirement of only using
complete years.

As in Case Study A.5, a continuous-time solution is to model µx and use all two years of data.
Delays in reporting of recent deaths could be handled either by using a parametric OBNR term
[Richards, 2022b] or using the approach of Richards [2022c], as illustrated in Figures 6 and 17. As
in Case Study A.5, the level of mortality would be chosen by judgement, such as a modelled value
from spring or autumn.

Case Study A.8

A UK insurer has historically written annuities based solely on the experience of its own maturing
money-purchase pension policies. The insurer decides to enter the open market for non-underwritten
annuities. However, there is a parallel open market for underwritten annuities, where better terms
are offered to lives with demonstrable health conditions [Ainslie, 2000]. The insurer is concerned that
the existence of the underwritten market creates selection effects in the new open-market standard
annuities that it is writing. The experience data of annuitants from its own maturing pension
policies are not believed to have such selection effects, so the new mortality pricing basis contains
some guesswork [Richards and Robinson, 2005].

At the end of the first year of the new strategy the insurer wants to urgently (i) validate its
pricing assumptions with respect to selection and (ii) set a valuation mortality basis for the new
open-market annuities. This cannot be done particularly cleanly using qx models, as a full year of
exposure has not yet been achieved for the new business. In contrast, a continuous-time analysis
based on µx can easily handle the fractional exposures of the annuities written during the year, with
no special modifications required; see Richards [2020, Section 6] for an example.

See also the related discussion around Figure 14.

Case Study A.9

A medium-sized UK pension scheme provides data for analysis. Inspection of the data suggests that
temporary and commuted pensions have been erroneously marked as deaths; see Figure 18, where
almost all 20 year-olds are allegedly die. While this mistake is irrelevant for modelling mortality
at ages 50 and over, it provides an indication that the data have not been properly processed. In
particular, the mortality of recipients of small pensions may be considerably over-stated due to
commuted cases being misclassified as deaths.
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Figure 18: Lives and “deaths” at young ages for medium-sized UK pension scheme. Temporary pensions
to children cease once they leave full-time education, but such cessations have been erroneously labelled as
deaths in the data extract. Source: own calculations.
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Case Study A.10

A Canadian pension plan will not provide full dates of death, as Canadian privacy laws apply to
those who have died in the past twenty years [PIP, 2018]. Instead, only the year and month of death
are provided.

Since we only know the month in which death occurs, this is interval censoring [Macdonald, 1996,
Section 2.3]. A continuous-time model can be built assuming that deaths take place on the 15th

of the month. The distortion will be small, with the actual date of death being on average only a
week away from this assumption (and with average deviations being close to zero). Note, however,
that the tracking statistic of Richards [2022b] will be affected by this loss of information, and the
Kaplan-Meier survival curve will have a more ridged appearance than would be the case with exact
dates of death.

Case Study A.11

An insurer is thinly capitalised with a small solvency margin. In the hope of lowering its capital
requirements, the insurer asks for reinsurance quotations for its large annuity portfolio . However,
even the cheapest reinsurance quotation has a mortality basis that is stronger than the insurer’s
existing reserving basis. This would require the insurer to pay an up-front premium, which it cannot
afford.

While the insurer can of course decline to reinsure, it cannot now leave its annuitant mortality
basis unchanged. It has just discovered the market price for its annuitant mortality, and must now
strengthen its mortality basis.

Case Study A.12

An insurer with a large annuity portfolio needs to plan staffing levels. In particular, the work
processing death notifications is often upsetting and stressful, and limits are in place for the amount
of time an individual member of staff can be assigned to this task. The insurer uses a mortality model
with a season term (see Section 4.4) to make short-term forecasts of likely deaths, thus informing
staffing requirements and rotas.
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Case Study A.13

An insurer has assumed the annuity liabilities of another insurer. In the UK this is a court-sanctioned
process known as a Part VII transfer [FSM, 2000, PartVII]. The IT department sets up the transferred
annuities on the administration system with the original commencement date. This makes it difficult
to separately identify the transferred annuities, which is problematic because there are periods of
survival between commencement and transfer without corresponding deaths.

A continuous-time solution is to use the date of the first annuity payment on the new system as
a proxy for the transfer-in date. This allows the new liabilities to be treated like Cases D and E in
Figure 1. As in Case Study A.4, such a solution works best for annuities paid relatively frequently,
e.g. monthly.

Case Study A.14

In contrast to Case Study A.13, a system migration takes place where the commencement date on
the new system is the date of migration, not the original date of retirement (which is then lost).

The migrated cases look like Cases A and B in Figure 1, but in reality they are like Cases D and
E. The exposure period can be calculated, but no modelling of duration or selection effects can take
place due to not having the actual retirement date.

Case Study A.15

An insurer runs a programme to identify unreported annuitant deaths. Instead of using the actual
date of death, the insurer processes the discovered cases en masse using the date of processing,
resulting in a large spike in deaths recorded for that particular date.

Here the survival times are unreliable for the mass-processed cases. Superficially, it might seem
preferable to use a model that specifically discards precise survival times, i.e. a qx analysis. However,
this is only likely to be true if such exercises are carried out sufficiently regularly that the inaccuracy of
the date of death is modest. There is a strong financial incentive to run regular existence-verification
exercises, say quarterly, as each identified case will release reserves. It is particularly beneficial to
run such exercises prior to the year-end statutory valuation.

Case Study A.16

A UK insurer has written a lot of bulk-annuity business and thus has significant liabilities for both
pensions in payment and deferred pensions. The actuary is tasked with setting a basis for both
sub-types of business, which are administered on the same computer system.

The occurred-but-not-reported (OBNR) deaths for pensions in payment is a relatively contained
problem. While there are reporting delays, they can be measured and allowed for, as described in
Section 4.3. Part of the reason for this is that the insurer has a constant feedback mechanism —
most UK pension payments are made via automated bank credit [Bac, 2019], and there is a specific
rejection code for an attempt to pay money into the account of a decedent (ARUCS2 — Beneficiary
Deceased).

However, the situation for deferred pensions is different — with no premiums to collect or pay-
ments to make, the reporting of deaths of deferred pensioners is typically sparse with very long delays.
It is not uncommon for the insurer to only find out about a past death when it tries to make the
first pension payment at retirement age. It is therefore common for the mortality data for deferred
liabilities to be unreliable, and for a basis to be derived without reference to experience data.

The situation for deaths of deferred pensions can sometimes be improved by the regular use of
third-party services, which provide matches to known deaths of varying degrees of confidence based
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on name, date of birth and last known address. However, it is important to use such external data
thoughtfully, as clumsy application can lead to bad publicity [Tims, 2024].

Case Study A.17

The German multi-employer pension scheme in Richards et al. [2013] stores only the year of death.
The data collected by the pension scheme have been designed for q-style analysis only. The exact
date of death could be obtained from another source, but the third-party administrator demands
payment for bespoke work not covered by the service contract. An additional issue is that pensioners
dying during the calendar year of retirement are not recorded at all, neither in the in-force at the
start of the year nor in the deaths.

If this were an insurer concerned about anti-selection, as in Case Study A.8, then it might be
worth paying for the exact dates of death for a continuous-time model. However, for a pension scheme
with slowly changing membership, the cost was not felt to be justified. A qx model could be built
with the data, or else a µx model assuming that all deaths occur in the middle of the year. Two
further consequences of not knowing the date of death are that (i) the tracking statistic of Richards
[2022b] cannot be used, and (ii) the Kaplan-Meier survival curves will take a pronounced step shape,
as exact ages of death are not known.

Case Study A.18

An annuity portfolio has been administered continuously since outset on the same computer system
without any record deletion, archiving of historic deaths or migration onto or off the system. All
annuity records are like Cases A, B and C in Figure 1, and it would be possible to model mortality
along these lines if (i) mortality levels were stable, (ii) mortality differentials were stable and (iii)
selection effects were stable. However, in practice these things change over time, so most organizations
restrict their modelling to the most recent experience, such as the past five years. This means that
older annuities are deliberately turned from Cases A and B into Cases D and E, respectively (and
very old Cases B and C are excluded entirely). See also Figure 11 for an illustration of the application
of such an investigation “window”.

Note that such continuity of experience can also be found with some very large, self-administered
pension schemes. The outsourcing of pension-scheme administration is invariably bad news for the
mortality experience data, especially changes of administrator.

Case Study A.19

An analyst at a UK insurer is directed to use the annual valuation extracts for analysis. The extracts
are policy-orientated and have been validated for year-end statutory balance-sheet calculations. How-
ever, the valuation extracts contain neither names nor postcodes, so the analyst cannot perform the
deduplication necessary for statistical modelling [Macdonald et al., 2018, Section 2.5]. The absence of
postcodes further means that geodemographic mortality modelling cannot be done either [Macdonald
et al., 2018, Section 2.8.1]. Finally, the annual ‘snapshot’ nature of the valuation extracts means that
policies that commence and terminate during the calendar year are not included, thus hampering the
modelling of anti-selection.

The analyst therefore arranges for a direct extract of policy records from the administration
system. Also, since mortality models routinely use geodemographic profiles [Madrigal et al., 2011], a
request is made to add postcodes to future valuation extracts.
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Case Study A.20

Many valuation systems are heavily restricted in the mortality risk factors they can cope with. It is
common to have the flexibility to upload a new mortality table of qx rates, but this typically limits
the calculations to using just age and sex as risk factors. Beyond this, such systems sometimes also
allow the application of a multiplier to the qx rates for portfolio-specific customization. This is a
problem for modern mortality analysis, which typically uses many more risk factors than just age
and sex — see the list in Section 1.

One solution is the equivalent-reserve method popularised by Willets [1999]. This involves calcu-
lating an annuity factor using the multi-factor mortality model, then finding the percentage of the
given mortality table that produces the same value. This is done for various risk-factor combinations
in Richards et al. [2013, Table 13]. However, this approach can be extended to the entire portfolio
valuation, thus automatically weighting the mortality risk factors by their impact on the liabilities.
The resulting table percentages can then be fed into the valuation system. An important point to
note is that financial distortions occur if the resulting table percentage falls far outside the 85-115%
range. If this is the case, then it is crucially important to change the reference table so that the
percentages are closer to 100%.

Case Study A.21

A US insurer is bidding for a multi-billion dollar buy-out of a large pension plan. The proposed
transaction is so large that on its own it will meet the insurer’s new-business target for this type of
risk. The pricing committee is both keen to win the business, but also worried about the financial
impact of possibly getting the mortality basis wrong. A request is made for a statistically rigorous
confidence interval around the best estimate of current mortality in the pension plan (the future-
improvement assumption is set centrally at the corporate level).

The pricing basis was derived using an individual survival model calibrated to the pension plan’s
experience data. This allowed the analysts to use the methodology of Richards [2016] to measure
the sensitivity of the liability value to the uncertainty surrounding the parameter estimates. A
process of simulating alternative parameter estimates consistent with the covariance matrix produced
a thousand alternative valuations of the liabilities. The relevant quantiles of these simulated liabilities
were then back-solved using the equivalent-reserve method of Case Study A.20 to produce a confidence
interval for the best-estimate mortality pricing assumption.

Case Study A.22

An underfunded UK pension scheme is approached by an advisor suggesting that health question-
naires should be sent to pensioners. Those pensioners qualifying for enhanced annuities due to poor
health will then have annuities bought from a specialist insurer. Since the enhanced annuities will
typically cost less than the notional reserve held in respect of these pensioners, the advisor argues
that this will improve the scheme’s funding position.

However, if pensioners in poorer health are selected out in this way, the remaining lives are by
definition the healthier, longer-lived ones. Thus, the scheme’s mortality basis therefore needs to be
strengthened for the remaining members after the enhanced-annuity exercise, and there should be
no net improvement in the funding position. Furthermore, carrying out this exercise limits future
buy-out options for the scheme — some insurers in the UK specifically ask about past ill-health
buy-outs, and refuse to quote if such an exercise has been carried out in the preceding five years.
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Case Study A.23

An insurer decides that it no longer wants to write annuities for its portfolio of vesting pension
policies. It decides instead to operate a small panel of annuity providers and take commission as an
introducer. This way the insurer can make money from the annuities without having to carry the
liabilities on its balance sheet. The insurer provides the mortality experience of its existing annuity
portfolio to prospective annuity writers seeking to join the panel. The mortality-experience data
contain details of the pension product type and whether a guaranteed annuity rate (GAR) is present.

The panel annuity writers need to calibrate a mortality model specific to the profile of this
portfolio, which can be done using survival models; see Richards [2008]. It is important to create
a differentiated mortality model that, where statistically justified, uses risk factors beyond age, sex,
pension size and postcode; see Madrigal et al. [2011] and Richards et al. [2013]. Product type,
distribution channel and annuity options selected by the policyholder are often signals for higher or
lower mortality. The panel annuity writer with the least sophisticated mortality basis will be selected
against by winning mainly mispriced business [Ainslie, 2000].

Case Study A.24

A long-established company has a large pension scheme. The company’s market value has steadily
shrunk over the years, while the pension scheme has become rather large. The company wants the
pension scheme to buy backing annuities to reduce the volatility in its published financial state-
ments. The nature of the company’s business has changed radically over time, and the workforce
and pensioners have changed along with it. The older pensioners are mainly drawn from a formerly
blue-collar workforce with occupational exposure to dust and chemicals. In contrast, recent retirees
are from a more white-collar workforce running a more services-orientated business.

Pension size is a less-reliable proxy for socio-economic differentials here. Former blue-collar work-
ers tended to have longer periods of service with lower salaries. However, their pension amounts
overlap substantially with former higher-salaried white-collar staff, who also had shorter periods of
service. A crude comparison against a standard table would not pick up the shift in the nature of the
socio-economic profile. This is particularly important here because the older, blue-collar pensioners
dominate the death counts, while the younger, white-collar pensioners dominate the liabilities. The
preferred solution is to fit a scheme-specific survival model, using the postcode-driven geodemographic
profile as a means of identifying the socio-economic differentials; see Richards [2008], Madrigal et al.
[2011] and Macdonald et al. [2018, pages 32–36] for details.

Case Study A.25

A UK insurer wants to reinsure a large block of annuity business exceeding £10 billion in reserves.
To reduce exposure to a single counterparty, and to open the bidding to smaller and medium-sized
reinsurers, the portfolio is split into four different blocks to be bid on separately. The blocks have
not been selected randomly, but according to internal criteria of the insurer. The insurer provides
the mortality experience of the entire annuity portfolio to prospective bidders.

Even if they are only planning on bidding for one or two blocks, bidders will use the entire data
set to calibrate a mortality model for pricing. It is important that all relevant risk factors are built
into the model, since bidders using simplistic pricing are at risk of winning only the blocks they
misprice [Ainslie, 2000].

29



30

Case Study A.26

A large UK pension scheme wants to buy annuities to back the pensions in payment. There is an
executive sub-scheme containing former executives, senior managers and the surviving spouses of
both. However, the executive sub-scheme is too small for a stand-alone analysis, especially a crude
comparison against a standard table. Instead, a mortality model is calibrated by the bidding insurer
using age, sex, pension size, geodemographic profile and a binary flag denoting membership of the
executive sub-scheme. Unsurprisingly, members of the executive sub-scheme have lower mortality
than non-members, even after allowing for risk factors like pension size and geodemographic type.
This turns out to be significant for pricing the buy-out, as the executive sub-scheme has a lower
average age and thus accounts for a larger share of reserves than is implied by their share of annual
pensions in payment.

Case Study A.27

A UK pension scheme has far heavier levels of mortality than predicted by a standard commercial
model allowing for age, sex, pension size and geodemographic profile. Much of the workforce in
question had past occupational exposure to asbestos, so there are grounds to believe that this is a
real result. However, the office-based members of the workforce did not have this exposure. The
question is whether the experience data is credible enough to justify a weaker mortality basis than
the standard commercial model? And, if so, what is statistically justifiable?

A bespoke mortality basis is derived for the pension scheme using survival models; see Richards
et al. [2013] and Madrigal et al. [2011] for examples of scheme-specific risk factors that can be used.

Case Study A.28

A UK insurer wishes to improve its mortality model by using postcodes and geodemographic profiles.
However, upon extracting the mortality experience data it finds that almost all deaths have the same
postcode, namely that of the insurer’s head office. It transpires that servicing staff change the address
of deceased annuitants to avoid accidentally sending post to the dead. From a strict data perspective
this is a misuse of the address field, but the business requirement of not further upsetting surviving
spouses takes precedence.

It is impossible to calibrate a geodemographic mortality model when only survivors have a res-
idential postcode. The insurer needs to extract the history of address changes for the annuitants,
and select the residential postcode for geodemographic profiling. However, it is also possible for an
address to be changed to that of a solicitor for an annuitant entering care. Fortunately, good geode-
mographic profilers in the UK typically distinguish between residential and non-residential postcodes.
If a history of addresses is available, the most recent residential profile should be used for modelling.

Case Study A.29

A UK insurer wishes to improve its mortality model by using postcodes and geodemographic profiles.
Analysis reveals that UK-resident annuitants without a geodemographic profile have high mortality.
Further investigation reveals that postcodes are recorded for these annuitants, but that these post-
codes are not listed in the geodemographic profiler database. The geodemographic profiler is used
for marketing purposes, and only contains currently valid UK postcodes, of which there are around
1.7 million. There are a further half-million retired postcodes that have been used by the Post Office
in years past, but which are no longer in use. However, dead annuitants are more likely to have a
retired postcode, and so a bias arises.

The servicing department is unwilling to incur the expense and disruption of updating address
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details for deceased annuitants. The solution is to get the provider of the geodemographic profiler to
back-fill their database with historic postcodes and provide the relevant geodemographic profiles for
them. This reduces the bias by assigning geodemographic codes to dead annuitants with out-of-date
postcodes.

Case Study A.30

A critical-illness (CI) portfolio has a total of 267 CI claims from almost 130,000 life-years of exposure.
A reinsurer wants to assess the extra risk — if any — posed by smokers. However, there are two
apparent problems. First, the smokers account for just 56 of the claims and 20,000 life-years of
exposure. Second, lapses are vastly more common than CI claims.

The presence of a dominant competing decrement makes a q-type model a poor choice for mod-
elling mortality; see Section 6. The actuary therefore treats lapses as censored observations and fits
a µ-type model for age, sex and smoker status, among other covariates. Despite the small number of
smoker CI claims, the model shows conclusively that smokers have a 57% higher CI claim rate than
non-smokers, with a standard error of 15%. This gives a p-value of 0.02% for the effect of smoking,
i.e. the result is highly significant even for an apparently small number of claims.

Case Study A.31

An investor owns a large portfolio of home-reversion plans. These are residential properties that
have been purchased while granting the former owners lifetime tenancy. These are not equity-release
mortgages — the investor has purchased the actual properties. Nor are these usufruct arrangements
— only the tenants named on the lease can live in the property, and they cannot rent it out to other
tenants.

The investor makes money from paying the former owners less than the market value of the
property in exchange for the right to live there rent-free. The investor can only take unencumbered
possession of the property when the last-named tenant leaves. There are two main decrements of
interest to the investor: mortality and inception rates for long-term care (LTC). In the supplied
experience data deaths occur nearly four times more frequently than LTC events. However, there is
also a number of cases where the tenants bought back their property.

The presence of two competing risks and another decrement makes a q-type model a poor choice;
see Section 6. The actuary therefore fits two µ-type models, one each for mortality and LTC inception.
For the mortality model, both LTC and buyback events are treated as censored observations. For
the LTC model, both deaths and buybacks are treated as censored observations.

Case Study A.32

An actuary is asked to analyse a second, smaller portfolio of UK home-reversion plans (see Case
Study A.31 for background details on this type of business). In addition to the expected decrements
of mortality and entry into long-term care, the actuary finds some additional decrements, such as
voluntary surrender of the lease and divorce of married tenants. Voluntary surrender of the lease was
deemed to be a precursor stage of long-term care, e.g. when an elderly tenant moves in with one of
their adult children. Divorces are trickier — they are obviously neither mortality or care-related, but
divorce leads to a named tenant being taken off the lease, thus bringing forward the repossession of
the property in the same manner as death or entry into long-term care.

The presence of multiple competing risks makes a q-type model a poor choice; see Section 6. The
actuary includes voluntary surrenders as events in the modelling of the care decrement. Divorces are
handled as censoring events for the lives taken off tenancy agreements, despite their financial impact
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being similar to mortality and care events.
A plot of the mortality-only survival curves after allowing for competing risks is shown in Fig-

ure 19. This exhibits a gap of eight years in the median survival age of males and females, which is
far larger than the equivalent gap in standard mortality tables. The gap in Figure 19 is, however,
consistent with the experience data of Case Study A.31 (not shown), suggesting that portfolio-specific
analysis is essential for this class of business.

Figure 19: Mortality-only Kaplan-Meier survival curves for lives in a home-reversion portfolio with competing
risks including long-term care inception, property buyback, voluntary surrender of lease and divorce.
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B Fractional years of exposure for q-type models

Figure 20: Trade-off decision tree for one-
year q-type models. One cannot have both
a GLM and fractional years of exposure.
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year qx

GLM Fractional
years of
exposure

A recurring theme in this paper is that annual q-type mod-
els typically require the analyst to discard fractional years
of exposure. This is certainly true when using standard
packaged models, such as GLMs; Figure 20 shows the
trade-off available. Even if a likelihood cannot lead to
a GLM it may still be perfectly useable as a model, see
Macdonald and Richards [2024, Section 3.7].

Note that the trade-offs with qx models go far further
than Figure 20. For example, an analyst may decide that
she has sufficient data to not need fractional year of expo-
sure, and so can use a GLM for a one-year qx. However,
this still means that she cannot simultaneously model pe-
riod effects and selection effects, as described in Section 4.2.

In this appendix we explore some of the options avail-
able to a qx modeller for handling fractional years of expo-
sure. As we will see, these options are incompatible with the use of a GLM, but they are achievable
with a bespoke likelihood optimized in another way. However, if one is optimizing a likelihood
directly, one might as well use a survival model.

In the rest of this appendix we have a single life aged x that is observed for t years with 0 < t < 1.
d is an indicator variable taking the value 1 if the life is dead at age x + t and zero otherwise. We
consider various ways of incorporating tqx into a likelihood, where qx is the probability of death in a
single year of age allowing for all risk factors.

B.1 Standard Bernoulli GLM likelihood

When a single full year of exposure is present, the standard individual contribution to a Bernoulli
log-likelihood, ℓGLM, is given in Table 1:

Table 1: Log-likelihoods for qx models, with and without allowance for fraction years of exposure.
Model Log-likelihood Formula

GLM ℓGLM (1− d) log(1− qx) + d log qx

Constant hazard ℓCH t(1− d) log(1− qx) + d log(1− (1− qx)
t)

UDD ℓUDD (1− d) log(1− tqx) + d log qx
Balducci ℓB (1− d) log(1− qx) + d log qx − log(1− (1− t)qx)
Madrigal et al. [2011] ℓM (t− d) log(1− qx) + d log qx

B.2 Constant hazard

Under the constant-hazard assumption [Broffitt, 1984, Table 1], 1− tqx = (1 − qx)
t. The individual

contribution to the Bernoulli log-likelihood, ℓCH, is given in Table 1. We can see from comparing
GLM and CH log-likelihoods that the assumption of a constant hazard to allow for fractional years of
exposure cannot be accommodated within a GLM because of the quite different form of the multiplier
for d on the right.
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B.3 Uniform Distribution of Deaths (UDD)

Under the UDD assumption [Broffitt, 1984, Table 1], tqx = tqx. The individual contribution to the
Bernoulli log-likelihood, ℓUDD, is given in Table 1. Note that we have dropped an additive term td as
it does not involve the parameter qx, and so does not change inference. We can see from comparing
the GLM and UDD log-likelihoods that the UDD allowance for fractional years of exposure cannot
be accommodated within a GLM due to the presence of t in log(1− tqx).

B.4 Balducci assumption

Also known as the hyperbolic assumption, the Balducci assumption is based on flawed reasoning
[Hoem, 1984] and implies a decreasing hazard with age (Broffitt [1984, page 85] described the Balducci
assumption as leading to “some unreasonable results”). It is therefore deprecated in favour of more
realistic assumptions like the constant hazard or UDD. We include it here merely for historical
curiosity; although it often appears in exercises for actuarial students, the Balducci assumption
should never be used in real work. Under the Balducci assumption [Broffitt, 1984, Table 1]:

tqx =
tqx

1− (1− t)qx
. (9)

The contribution to the Bernoulli log-likelihood, ℓB, is given in Table 1. There is an additive td

term that does not affect inference for the parameter qx and is therefore omitted. Once again, we can
see from comparing the GLM and Balducci log-likelihoods that the Balducci assumption to allow for
fractional years of exposure cannot be accommodated within a GLM because of the extra third term
on the right of ℓB.

B.5 Weighting the log-likelihood

Madrigal et al. [2011, Section 4.3.1] claimed that fractional years of exposure could be included
in a q-type model by “weight[ing] the contribution of each of the membership records according
to its exposure to risk in a year”. However, this does not allow for fractional years of exposure, as
discussed in Madrigal et al. [2011, page 61]. Madrigal et al. [2011, page 62] claim that their individual
contribution to the Bernoulli log-likelihood, ℓM, is as given in Table 1 (after some re-arrangement).
However, ℓM cannot be part of a GLM because of the (t− d) coefficient of log(1− qx). Furthermore,
weighting observations by the interval length is not a valid way to allow for fractional exposures.

B.6 Conclusions

As per Figure 20, the only way to have a one-year q-type GLM is to discard fractional years of
exposure. If the actuary insists on a q-type model, but relaxes the requirement to have a GLM,
then it is possible to directly use a likelihood with either the constant-hazard or UDD assumptions.
Apparent alternatives are either deprecated (such as the Balducci assumption [Hoem, 1984]) or simply
invalid (such as weighting the exposures as in [Madrigal et al., 2011, Section 4.3.1]).

However, a one-year q-type model still involves compromises, such as the inability to simultane-
ously model period effects and selection effects demonstrated in Section 4.2. If an analyst is willing
to directly maximise a likelihood, then a survival model for µx is both simpler and less restrictive.

B.7 Open-source software implementations

The R [R Core Team, 2021] stats package contains the glm() function for fitting ordinary GLMs for
q-type and µ-type models. However, q-type GLMs can only be fitted where the exposure intervals
are of identical length, i.e. no fractional varying years of exposure.
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C Discarding Data

C.1 Background

Methods based on the estimation of qx came naturally in early studies of mortality, since the aim
was to construct a life table. Notably, the seminal attempt to give an explanatory model of mortality
[Gompertz, 1825] was based on µx, but this lead was pursued only sporadically in the following two
centuries. Even in 1988, the landmark paper of its time [Forfar et al., 1988] treated the estimation
of µx and qx equally. There are, of course, situations where the data make a binomial model most
appropriate (see Case Study A.17 in Appendix A) but otherwise the q-type modeller faces a choice
between discarding data that do not suit the hypothesis, or adapting the hypothesis to suit the actual
data.

When starting out in mortality studies, it is often stated, or simply assumed, that all data must be
included in the analysis — that discarding some selected data must bias the results — thus presenting
the q-type modeller with a problem. However, this is rarely demonstrated, which is understandable,
as doing so requires much of the apparatus which has not yet been seen. In this appendix, we consider
the legitimacy of discarding parts of the data. Our approach is informal, drawing on the more formal
arguments in Andersen et al. [1993], which are based on counting processes. We refer the reader
there for a more rigorous treatment.

For simplicity we confine attention to an interval of age [x, x+ 1], and suppress the initial age x,
so we consider the interval of time or duration t ∈ [0, 1]. We assume a constant force of mortality µ
on this interval, therefore also a binomial model with parameter q = 1 − exp(−µ). This is enough
for our purpose because:
(a) if µ̂ is the maximum likelihood estimate of µ then 1−exp(−µ̂) is the maximum likelihood estimate

of q; and
(b) our analysis can be extended to non-constant parameters µx+t and qx+t but at the cost of much

more notation and the use of product-integrals (see Macdonald and Richards [2024]).

C.2 Data and Likelihood

We observe M individuals, and for the ith individual we have the following data:
(a) durations ri of entry to observation and ti of exit from observation, with 0 ≤ ri < ti ≤ 1; and
(b) an integer-valued indicator di of the reason for observation ceasing; di = 1 if the reason was

death, and di = 0 if the reason was right-censoring.

The ith individual is observed on the interval [ri, ti], which we denote by ∆i, and we denote the
interval [0, 1] by ∆. From Macdonald and Richards [2024] we borrow the process Y i(t), equal to 1 if
the ith individual is under observation ‘just before’ time t, and equal to 0 otherwise (the ‘just before’
is a technicality we can ignore).

To extend the model to allow for voluntary lapsation, all that is needed is to (i) assume that a
constant force of lapsing ν operates alongside µ, and (ii) to define another indicator wi, taking the
value 1 if lapsing is the reason for observation ceasing, and 0 otherwise.

The contribution of the ith individual to the likelihood is the factor Li defined as:

Li = exp

(
−
∫

∆i

Y i(t) (µ+ ν) dt

)
µdi νwi , (10)

the total likelihood, denoted by L, is:
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L =
∏

i

Li, (11)

and the MLE, denoted by µ̂, is:

µ̂ =

∑

i

di

∑

i

∫

∆i

Y i(t) dt
. (12)

C.3 Obligate versus Random Right-Censoring

Observation of the ith individual is left-truncated if ri > 0. Observation is right-censored if di = 0,
but we distinguish two kinds of right-censoring:
(a) random right-censoring means the policy lapsed, wi = 1; and
(b) obligate right-censoring means the individual was observed to survive until some predetermined

time (in a sense to be made precise below) at which observation necessarily ended. Examples of
such times are:
(1) the end of the interval [0, 1] (or more generally, the rate interval);
(2) the date of data extraction;
(3) the date of transfer out of the portfolio; or
(4) the end-date of the investigation (for example, in a CMI-style investigation).

The key point about obligate right-censoring is that the time of obligate right-censoring is known
as soon as the individual enters observation3. Technically, the time t′i when observation on the ith
individual must end is a random variable with ri < t′i ≤ 1, but its value becomes known when the
ith individual enters observation at time ri (that is, t

′
i is Fri-measurable). So we have three possible

cases:
(a) Case 1: obligate right-censoring, di = wi = 0, ti = t′i;
(b) Case 2: random right-censoring, di = 0, wi = 1, ti < t′i; and
(c) Case 3: death, di = 1, wi = 0, ti < t′i.

The main result of this Appendix is that the data on selected lives can be discarded, based on
the time ri of entry and the time t′i of obligate right-censoring, without biasing the estimation of µ.
However, randomly right-censored data cannot be so discarded.

Define ∆′
i = [ri, t

′
i], the greatest interval on which the ith individual might be observed, and define

∆ = [0, 1]. Then:
(a) observation of the ith individual is randomly right-censored if wi = 1; and
(b) observation of the ith individual is left-truncated or obligate right-censored if ∆′

i ̸= ∆.

3Censoring at a pre-determined time is generally known as ‘Type I’ censoring in survival analysis (Collett [2003],
Andersen et al. [1993]). However, the observation of a subject in an actuarial investigation usually begins left-truncated
at a random time (age) and the time of mandatory censoring is then determined dynamically by the age definition
and the observational plan; see Figure 11(b). The name ‘obligate censoring’ seems more descriptive, and a suitable
contrast to ‘random censoring’ caused by lapsing.
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C.4 Discarding Left-truncated and Obligate Right-censored Data

If ∆′
i ̸= ∆ then the individual cannot complete a full year’s exposure. If the q-type analyst discards

such data, the modified likelihood, denoted by LObl, is:

LObl =
∏

∆′
i=∆

Li. (13)

Assuming that there is no selective reason for entry to be left-truncated or exit to be obligate right-
censored, all such data can be discarded, deaths and lapses along with exposure data, without biasing
any likelihood-based estimation. Note that this is an assumption that often seems reasonable, but
may be hard to verify. Therefore:

µ̂Obl =

∑

∆′
i ̸=∆

di

∑

∆′
i ̸=∆

∫

∆i

Y i(t) dt
−→ µ. (14)

See Section III.2.2, also Example III.2.3, in Andersen et al. [1993] for a formal justification.

C.5 Discarding Randomly Right-censored Data

If randomly right-censored data are discarded the modified likelihood, denoted by LRan, is:

LRan =
∏

wi ̸=1

Li =
∏

wi ̸=1

exp

(
−
∫

∆i

Y i(t) (µ+ ν) dt

)
µdi . (15)

If wi = 1 and the ith individual’s data is excluded, the time |∆i| for which the individual was
exposed to the risk of death and lapse, is removed from the exposed-to-risk, but no deaths are removed
from the data. The MLE µ̂Ran is:

µ̂Ran =

∑

wi ̸=1

di

∑

wi ̸=1

∫

∆i

Y i(t) dt
=

∑

i

di

∑

wi ̸=1

∫

∆i

Y i(t) dt
≥

∑

i

di

∑

i

∫

∆i

Y i(t) dt
= µ̂ (16)

where the last inequality is strict if and only if at least one individual lapses. Therefore, discarding
randomly right-censored data will bias the estimate of µ upwards, and also the estimate of q. Of
course, the argument displayed in (16) is exactly the same as the normal argument for not excluding
censored data in a survival analysis.
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D Non- and semi-parametric methods
Between the worlds of discrete-time and continuous-time analysis lies a middle ground of non- and
semi-parametric methods. These are based on occurrence-exposure ratios, but where the interval is
neither fixed nor set by the analyst. Instead, the interval sizes are determined by the data, specifically
the gaps between each death and the next. As the portfolio size grows, the gaps shrink to a single
day, and thus non- and semi-parametric methods quickly become continuous-time methods for all
practical purposes. Actuaries should not be confused by the d/l notation for ratios into thinking
that these are q-type methodologies — the occurrence-exposure ratios are estimating mortality over
short intervals, i.e. they are estimates of µ.

In this appendix we look at three different methodologies for three different time dimensions: age,
duration and calendar time. These methodologies have much to offer practising actuaries, from the
data-quality checking of Section 7 to the real-time reporting of Section 8.

D.1 Kaplan-Meier estimator

The methodology of Kaplan and Meier [1958] is non-parametric, and is a re-arrangement of the
experience data into a survival curve. This survival curve can be by duration, such as is often the
case with medical trials [Collett, 2003, Section 2.1.2]. However, the most useful definition of the
Kaplan-Meier estimator for actuaries is the one by age in Macdonald et al. [2018, equation (8.3)]:

tp̂x =
∏

ti≤t

(
1− dx+ti

lx+t−i

)
, (17)

where x is the outset age for the survival function, {x+ ti} is the set of distinct ages at death, lx+t−i
is the number of lives alive immediately before age x+ ti and dx+ti is the number of deaths occurring
at age x+ ti. Informally, and following Section 2, we can think of lx+t−i

as the number of lives alive

just after midnight on a given day, with deaths dx+ti happening around mid-day. Figures 12(a) and
19 show examples of Kaplan-Meier curves.

The Kaplan-Meier estimator in equation (17) is the product-limit estimator of the survival curve
discussed in Macdonald and Richards [2024, Section 4.2]. It is also the product-integral of the
Nelson-Aalen estimator in equation (19) below.

D.2 Nelson-Aalen estimator

The methodology of Nelson [1958] is non-parametric, and is a re-arrangement of the experience data
into a cumulative risk curve. This cumulative risk can be by duration, such as is often the case in
medical work:

Λ̂(t) =
∑

ti≤t

dti
lt−i

, (18)

where {ti} is the set of distinct durations at death, lt−i is the number of lives alive immediately before
duration ti and dti is the number of deaths occurring at duration ti. Figure 14 shows an example of
equation (18) being used to monitor differences in mortality for new annuity business.

However, another useful definition for actuaries is one by age:

Λ̂x(t) =
∑

ti≤t

dx+ti

lx+t−i

. (19)
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The Nelson-Aalen estimator is the non-parametric estimator of the integrated hazard in Macdon-
ald et al. [2018, equation (3.23)].

D.3 Fleming-Harrington estimator

The methodology of Fleming and Harrington [1991] is non-parametric, and uses the Nelson-Aalen
estimator of the cumulative hazard to estimate the survival curve from age x:

tp̂x = exp
(
−Λ̂x(t)

)
, (20)

where Λ̂x(t) is the Nelson-Aalen estimator from equation (19). The Fleming-Harrington estimator is
the non-parametric equivalent of the identity:

tpx = exp

(
−
∫ t

0

µx+sds

)
=

∏

s∈(0,t]
(1− µx+sds). (21)

The Fleming-Harrington estimator is slightly preferable to the Kaplan-Meier estimator for very
small data sets, in part because approximate confidence intervals for the latter are not restricted to
[0, 1] [Collett, 2003, Sections 2.2.1 and 2.2.3]. However, for the data sets of the size that actuaries
use there is usually no meaningful difference between the two estimators.

D.4 Relationships

There are important relationships between the Kaplan-Meier, Nelson-Aalen and Fleming-Harrington
estimators. The product-integral of a piecewise-constant function such as equation (19) is a discrete
product such as equation (17). Therefore, the Kaplan-Meier estimator is the product integral of
the Nelson-Aalen estimator; this is exact, not approximate. The Fleming-Harrington estimator in
equation (20) is the exponential of (minus) the Nelson-Aalen estimator in equation (19), and is an
approximation to the Kaplan-Meier estimator in equation (17) (and a good one for the datasets
typically used by actuaries).

In some literature [SAS Institute Inc., 2017, page 5336] an alternative to equation (19) for small
samples is given as:

Λ̂x(t) =
∑

ti≤t

dx+ti−1∑

j=0

1

lx+t−i
− j

. (22)

Equations (19) and (22) are identical if dx+ti = 1. Even where some dx+ti are greater than 1,
equation (22) only produces materially different answers with small sample sizes. For actuarial data
sets there is little meaningful difference, so we prefer equation (19) for simplicity.

D.5 Semi-parametric methods

Richards [2022b] introduced a semi-parametric estimator in calendar time for investigating short-
term fluctuations in mortality. The methodology has two stages, the first of which is to calculate
the non-parametric Nelson-Aalen estimator of the cumulative hazard with respect to calendar time,
rather than age or duration:

Λ̂y(t) =
∑

ti≤t

dy+ti

ly+t−i

, (23)
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where y is the outset calendar time for the cumulative risk, {y+ti} is the set of distinct dates of death,
ly+t−i

is the number of lives alive immediately before date x + ti and dy+ti is the number of deaths
occurring on date y + ti. Informally, and following Section 2, we can think of ly+t−i

as the number of

lives alive just after midnight on a given day, with deaths dy+ti happening around mid-day. Λ̂y(t) is
the equivalent of equation (19), but with respect to calendar time instead of age. A practical point is
that the real-valued calendar time is calculated using the actual number of days in the year, rather
than the average of 365.24 given in Section 2. For example, 14th March 2023 would be represented
as 2023.1973 (being 72 days into a 365-day year); in contrast, 14th March 2024 would be represented
as 2024.1995 (being 73 days into a 366-day year).

The second step is to estimate the portfolio-level hazard in time, µy(t). This ignores the age
of individual lives, and so is only useful for investigating fluctuations over relatively short periods
of time, where the age profile of the portfolio does not change radically. To estimate µy(t) from
equation (23) we need to apply some degree of smoothing over a suitable short interval, c. We thus
obtain a semi-parametric estimate of the mortality hazard at a point in time, µ̂y(t, c), using c as a
bandwidth parameter. This can be done in a number of ways, but a simple one is to use a central
difference in the estimator in equation (23) around the time of interest:

µ̂y(t, c) =
1

c

(
Λ̂y(t+ c/2)− Λ̂y(t− c/2)

)
, (24)

where c is selected by the analyst to smooth random variation. When c ≤ 0.5, µ̂y(t, c) will reveal
detail such as seasonal variation (Figure 13(a)), mortality shocks [Richards, 2022b, Figure 3] and
data-quality issues (Figure 13(b) and [Richards, 2022b, Appendix A]). When c ≫ 0.5 short-term
variations are smoothed out. Over longer periods of time µ̂t(t, c) will reflect changes in the age
distribution of the portfolio [Richards, 2022b, Figure 2].

Equation (24) is calculated using an extract at a point in time, u, so we could write µy(t, c, u) to
make it explicit that the calculation is with respect to a particular data extract at time u. This can
be useful when estimating delays in reporting deaths; see Section 4.3 and Richards [2022b, Section
4], where the ratio µy(t, c, u1)/µy(t, c, u2) provides an estimate of the proportion of deaths reported
up to time u1, under the assumption that the estimate at time u2 contains most of the unreported
deaths up to time u1. This presupposes that the gap u2 − u1 is large enough to allow most OBNR
cases up to u1 to have been subsequently reported. In reality, the estimate of µy(t, c, u2) at times
before u1 will also be affected by OBNR, but this effect can be minimised by a suitably large gap
between u1 and u2.

As an alternative to equation (24), µ̂y(t, c) could be calculated directly in a single step as:

µ̂y(t, c) =
2

c

∑

t−c/2<ti≤t+c/2

K

(
2(ti − t)

c

)
dy+ti

ly+t−i

, (25)

where K(u) is a kernel function for smoothing; see Andersen et al. [1993, Section IV.2.1]. Equa-
tion (24) results from using the uniform kernel:

K(u) =

{
1
2

|u| ≤ 1

0 otherwise,
(26)

but other kernel smoothers with greater efficiency are available, such as the Epanechnikov kernel
[Epanechnikov, 1969]:
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K(u) =

{
3
4
(1− u2) |u| ≤ 1

0 otherwise.
(27)

The kernel functions in equations (26) and (27) are illustrated in Figure 21. The Epanechnikov kernel
is likely to be more suitable for applications where measuring short-term fluctuations is important.

Figure 21: Sample kernel-smoothing functions in equations (26) and (27).
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D.6 Open-source software implementations

The R [R Core Team, 2021] survival package contains the survfit() function for computing the
Kaplan-Meier and Fleming-Harrington estimators in equations (19) and (22). The Python module
scikit-survival contains an implementation of the Kaplan-Meier estimator. Macdonald et al.
[2018] also contains R source code. Richards [2022b, Appendix C] contains R source code for the
semi-parametric estimator in equation (24).
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E Individual lifetimes v. grouped counts
In the body of the paper we show why µ-type methods are superior to q-type methods. We also assume
that individual records are extracted, as this enables better data-quality checking [Macdonald et al.,
2018, Chapter 2]. However, the analyst still had two choices for a µ-type model: the modelling of
individual lifetimes (a survival model) or the modelling of grouped counts.

E.1 Individual lifetimes

Suppose we have the following for life i: the entry age into observation, xi; the time observed, ti;
and the indicator, di, which takes the value 1 if life i died at age xi + ti and zero otherwise. The
contribution, Li, of life i to the likelihood is then:

Li = tipxi
µdi
xi+ti (28)

= exp

(
−
∫ ti

0

µxi+sds

)
µdi
xi+ti (29)

= e−Λxi (ti)µdi
xi+ti , (30)

where Λx(t) =

∫ t

0

µx+sds is the integrated hazard; see Macdonald et al. [2018, equation (3.23)]. The

corresponding contribution of life i to the log-likelihood, ℓi, is:

ℓi = logLi (31)

= −Λxi
(ti) + di log µxi+ti . (32)

For a data set of n lives, the full likelihood is then L =
n∏

i=1

Li and the corresponding log-likelihood

is ℓ =
n∑

i=1

ℓi. Modelling individual lifetimes is the most elemental mortality model; Macdonald and

Richards [2024] call this a ‘micro’ model. One benefit of modelling individual lifetimes is that more
information can be used on individual attributes and covariates. For example, Richards [2022a]
showed how to include the exact pension amount as a continuous covariate in mortality modelling.

E.2 Grouped counts

An alternative approach is to create homogeneous sub-groups of shared characteristics. Suppose

for sub-group j we have nj lives with total time observed Ec
j =

nj∑

i=1

ti and total observed deaths

Dj =

nj∑

i=1

di. Assuming a constant mortality hazard rate of µj, the contribution to the likelihood, Lj,

is:

Lj = e−Ec
jµjµ

Dj

j . (33)
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Equation (33) looks like a Poisson likelihood, and this leads to the common misconception that
Dj has a Poisson distribution with mean parameter Ec

jµj. This is not true, as demonstrated in detail
by Macdonald and Richards [2024, Section 3]. In fact, the random variable is the pair (Dj, E

c
j ), which

cannot have a Poisson distribution. However, the likelihoods for a Poisson model for Dj and the pair
(Dj, E

c
j ) are the same up to a multiplicative constant, so the inference will be the same; Macdonald

and Richards [2024, Section 3] called the likelihood in equation (33) pseudo-Poisson. This means
that a pseudo-Poisson grouped-count model like equation (33) can be fitted using the machinery of
a Poisson GLM, even though the observed death count Dj is not Poisson.

Grouped-count models lose information due to grouping. Care is required with the assumption
of a constant hazard rate, µj, which requires that lifetimes are split into small enough age ranges for
this approximation to be justified; see Macdonald and Richards [2024, Appendix 1]. Even greater
care is required with continuous variables like pension size, where the assumption of a constant effect
within a discrete band can lead to systematic over-estimation of mortality of pensioners. Figure 22
shows the deviance residuals by pension size-band for a model with age and sex as covariates. The
non-random variation suggests that the wealthiest pensioners have significantly lower mortality. If
we split the lives into twenty equal-sized groups, Figure 22(a) suggests that the top 10% of amounts
are different from the rest. However, Figure 22(c) shows that the assumption of a constant mortality
effect within this group is false — there is continuous variation by pension amount. This is important
for actuarial purposes, because the assumption of a constant effect risks financial bias — all other
factors held equal, the financial impact of those on the right always outweighs the financial impact
of those on the left.

Figure 22: Deviance residuals by pension size-band, with 1 representing the smallest pensions. Source:
Mortality model for age and sex for English pension scheme from Richards [2022a].
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One counter-argument sometimes advanced in favour of discretization is that a model could be
fitted using the 100 size-bands in Figure 22(b), say with some penalty function to dampen the
inevitable volatility in parameter estimates. However, this would be an additional complexity to deal
with the problem caused by discretization. It is far simpler to instead treat variables like pension
size continuously and not have the problem arise in the first place. Richards [2022a, Tables 7 and 8]
showed that treating pension amount as a continuous risk factor for mortality produced a model with
the fewest parameters and the lowest-equal information criterion. This is an extension of graduation
by mathematical formula, where a smooth progression in mortality rates by age is guaranteed during
the model fit [Forfar et al., 1988]. We go a step further and treat all continuous variables this way,
not just age.
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E.3 Stratification

Irrespective of whether mortality modelling is of individual lifetimes or groups, there is the question of
how to handle sub-groups with shared characteristics. One approach is to sub-divide the experience
data and fit separate models, i.e. stratification of the data set. In general stratification should be
avoided wherever possible, as it increases the overall number of parameters required and weakens the
statistical power of the data set [Macdonald et al., 2018, Section 7.3]. However, stratification can on
rare occasions be justified where the mortality hazard rate has fundamentally different properties,
such as where sub-groups have a different shape of mortality curve by age.

E.4 Open-source software for individual lifetimes

The R [R Core Team, 2021] survival package contains the survreg() function for fitting parametric
survival models. However, most of the models available do not handle left-truncation. Macdonald
et al. [2018, Chapter 5] provide R scripts for fitting models to left-truncated data, with discussion on
use of the R’s nlm() and solve() functions. Commercially supported services are also available.
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1

ON CONTEMPORARY MORTALITY MODELS FOR ACTUARIAL USE
II: PRINCIPLES

By Angus S. Macdonald†and Stephen J. Richards‡

abstract

We reprise some common statistical models for actuarial mortality analysis using grouped
counts. We then discuss the benefits of building mortality models from the most elemental
items. This has two facets. First, models are better based on the mortality of individuals,
rather than groups. Second, models are better defined in continuous time, rather than over
fixed intervals like a year. We show how survival probabilities at the ‘macro’ level arise at
the ‘micro’ level from a series of Bernoulli trials over infinitesimally small time periods. Using
a multiplicative representation of the mortality hazard rate, we show how counting processes
naturally represent left-truncated and right-censored actuarial data, individual or age-grouped.
Together these explain the ‘pseudo-Poisson’ behaviour of survival model likelihoods.
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If I dared, I would say we must have a theory — the word ‘theory’ is so much disliked
by so many Englishmen, and is considered by them so ‘unpractical’, that I avoid it
all I can; though I cannot see, myself, that it is very ‘practical’ to do things without
knowing the theory of how to do them.

Wintringham & Blashford-Snell (1973)

1. Introduction

1.1 In Search of a Continuous-time Model of Mortality
Richards & Macdonald (2024) set out some practical benefits of using ‘continuous-

time’ models of mortality. This expository paper asks what we mean by a ‘continuous-
time’ model of mortality. As we seek an answer, in the theoretical basis of actuarial
mortality modelling, we provide the language and notation to keep actuaries abreast of
some fairly recent developments. The purpose of the paper is not to provide novel results,
but to demonstrate how an actuary can see familiar objects in novel ways.

In fact, the idea of a ‘continuous-time’ model of mortality is not clear-cut or self-
contained, and it leads us to consider two contrasts, which we may think of as modelling
phenomena on a ‘micro’ scale versus phenomena on a ‘macro’ scale. These are:
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(a) very informally, the choice of infinitesimal time unit dx versus a discrete time unit,
which we take to be a year; and

(b) models based on individual lives versus models based on collectives of lives, including,
inter alia, the collection of data based on individual lives versus collection of age-
grouped data.

1.2 Inspiration from the Life Table
The life table is an obvious source of inspiration. Indeed, in the past some have viewed

the whole subject as being the construction of life tables, see for example Batten (1978).
A life table is a model of a cohort of identical and independent individuals, followed from
some initial selection event at integer age x0 ≥ 0 (such as birth, with x0 = 0) until
mortality has extinguished the whole cohort, typically represented by the function lx,
interpreted as the expected number left alive at integer ages x ≥ x0. The two key features
are:
(a) the focus on the collective rather than the individual; and
(b) the time unit of a year;

which are both ‘macro’ properties. If we model the number of deaths between integer ages
x and x+ 1 as a random variable Dx, then this formulation of the life table immediately
suggests the binomial distribution as a model for Dx, see Section 2.3.

A slightly different view of the life table inspires a different model. Allow lx to range
over all real x ≥ x0, not just integer ages, and interpret the ratio lx+n/lx as the probability
that an individual alive at age x survives to age x + n (x ≥ x0, n ≥ 0). This leads to
further ideas, namely:
(a) a model in which death is possible at any moment of time; and
(b) the force of mortality or hazard rate (our preferred term) µx at age x as a measure

of the instantaneous risk of death;

which are both ‘micro’ properties. However, observation is still ‘macro’, of the collective
rather than of the individual. This setup suggests a Poisson model for Dx, see Section
2.4.

1.3 Models Based on Individuals: The Pseudo-Poisson Model
More recent introductions to the subject begin with the definition of the future lifetime

of a person age x as a non-negative random variable, denoted by Tx. For brevity and
completeness, we compress the definitions of related quantities into Table 1, see Dickson
et al. (2020) or Macdonald et al. (2018) for details. Of course, the actuarial symbols

tqx, tpx and µx would be defined, based on the life table, in the process of obtaining the
binomial and Poisson models in Section 1.2, but the point is that they are now defined
by their rôles in the distribution of Tx.

If we define T i
0 to be the random lifetime of the ith individual under observation, this

model focusses attention on:
(a) the individual rather than the collective; and
(b) events happening instantaneously, meaning during a short time period h as we let

h → 0+;
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Table 1: Definitions of quantities based on Tx, the random future lifetime at age x. The
consistency condition assumes that x0 = 0, and ensures that calculations based on the
distribution of Tx will never contradict calculations based on the distribution of Ty (y ̸= x).

Quantity Definition

Distribution function: P[Tx ≤ t] = tqx
Survival function: P[Tx > t] = tpx

Hazard rate : lim
h→0+

hqx
h

= µx

Density function:
d

dx
tqx = tpx µx+t

Consistency condition: P[Tx ≤ t] = P[T0 ≤ x+ t | T0 > x]

which are both ‘micro’ properties. The most important idea is expressed in the heuristic:

P[Dead by age x+ h | Alive at age x] = hqx ≈ hµx (for small h). (1)

Knowing the density function of each T i
x (Table 1), we can write down the probability

of any observations, hence a likelihood, and that leads to the following explanation of why
the Poisson model of Section 2.4 works so well. Suppose we assume a constant hazard
rate at each age, we observe M individuals and there are D deaths. Then:
(a) the model based on individual random lifetimes gives us, in principle, an exact prob-

ability of observing D deaths; while
(b) the Poisson model of Section 2.4 gives us only an approximate probability of observing

D deaths (it must do since D ≤ M but P[D > M ] > 0 under a Poisson model);
however

(c) both models give us exactly the same likelihood of observingD deaths (up to irrelevant
factors).

It follows that inference based on the likelihood will be identical under both models.
This leads us to call the model based on individual lifetimes (and a constant hazard) the
pseudo-Poisson model (Section 3.7). We continue to seek the proper foundations of a
mortality model at the ‘micro’ level in the model of individual lifetimes.

1.4 Dynamic Life History Models I: Truncation and Censoring
The individual life-history model lets us write down exact probabilities of observed

events, if we know the hazard rates. It also lets us deal with incomplete observation, in
particular:
(a) left-truncation: an individual enters observation having already survived to some age

xa > 0; and
(b) right-censoring: the individual leaves observation while still alive, so we observe only

that Txa > xb for some age xb > xa.

A neat device allows us to avoid the complication of keeping track of ages xa and xb

when writing expressions such as likelihoods. Define a process:
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Y i(x) = I{ith individual alive and under observation at age x−} (2)

(age x− means ‘just before age x’ and is a technicality). The ‘under observation’ condition
takes care of left-truncation and right-censoring. Then, for example, the integrated hazard
rate over the time spent under observation by the ith individual (an important quantity
in many calculations), can be written:

∫ xb

xa

µx dx =

∫ ∞

0

Y i(x)µx dx. (3)

We see that the process Y i(x)µx acts as a dynamic or stochastic hazard rate tailored to
the ith individual, and greatly simplifies expressions involving integrals, since all integrals
can now be now taken over (0,∞] (Section 4.6).

1.5 Dynamic Life History Models II: Back to Bernoulli
In a utilitarian sense the job was finished with Section 1.3, but the heuristic (1)

suggests more to come. For, if hqx ≈ hµx then hpx ≈ 1 − hµx, and if we let δx be an
indicator, equal to 1 if death occurs at age x, and 0 otherwise, then what is observed
‘during’ time h is the outcome of a Bernoulli trial with parameter hµx and probability:

(1− hµx)
1−δx (hµx)

δx . (4)

We would like to take all such consecutive ‘instantaneous’ Bernoulli trials while the
individual is alive and under observation, and multiply their probabilities (4) together. In
all of probability theory, there is nothing simpler than a Bernoulli trial, so we really would
have reduced a probability in a mortality model to its constituent ‘atoms’; the ultimate
‘micro’ level. That is what we describe in Section 4. To do so we introduce two ideas,
which give us the notation needed to write down a product of Bernoulli probabilities like
(4) in a rigorous way.
(a) Counting processes: A counting process N i(x) starts at N i(0) = 0 and jumps to

1 at time T i
0 if the ith individual is then under observation. Then its increment

dN i(x) indicates an observed death, and is a rigorous version of the informal δx in
(4). Between them, N i(x) and Y i(x) let us write the Bernoulli trial probability (4)
formally as:

(1− Y i(x)µx dx)
1−dN i(x) (Y i(x)µx dx)

dN i(x) (5)

and this allows for left-truncation and right-censoring.
(b) Product-integral: The product-integral is the device that lets us multiply all the

infinitesimal Bernoulli trial probabilities. We defer further description to Section 4.2
and Appendix 2 and just give the final form of the likelihood contributed by the ith
individual, denoted by Li:

Li =
∏

x∈(0,∞]

(1− Y i(x)µx dx)
1−dN i(x) (Y i(x)µx dx)

dN i(x). (6)

The product-integral is identified by a product over all values of an interval (x ∈ (0,∞]
here) and the presence of the variable of integration (dx here) in the integrand.
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Therefore, we have a mortality model with the following properties:
(a) It is irreducible, in the sense that it is composed of consecutive (infinitesimal) Bernoulli

trials.
(b) It is based on behaviour at the ‘micro’ time scale.
(c) It is based on individual lives.
(d) Aggregated, over time and over individuals, it explains the Poisson-like nature of

likelihoods, therefore estimation based on the collective at the ‘macro’ time scale.
(e) It allows for left-truncation and right-censoring.
(f) It is easily extended to multiple-decrement and multiple-state models.

We started out by trying to pin down what we meant by the vague term ‘continuous-time
mortality model’. Now we have an answer, although our endpoint is just the starting
point for the modern statistical study of survival models (Section 4.10), see Andersen
et al. (1993).

1.6 Plan of this Paper
We start in Section 2 with Forfar et al. (1988), a definitive account of graduation

using binomial and Poisson models, which we call mortality models at the ‘macro’ scale.
Then in Section 3 we turn to models at the ‘micro’ scale based on individual lifetimes,
and find the origins of Poisson-like behaviour at the ‘macro’ scale. In Section 4 we bring
together models of individual lifetimes and models based on behaviour over small intervals
h as h → 0+, and find that all probabilities in a mortality model arise as a product of
consecutive (infinitesimal) Bernoulli trials. Section 5 concludes.

2. Binomial and Poisson Models

2.1 Forfar et al. (1988)
In a landmark paper, Forfar et al. (1988) gave comprehensive accounts of two models

for survival data, namely the binomial and Poisson models. These defined: (a) the random
variable Dx, to be the number of deaths observed at age x; and (b) a suitable measure
of exposure to risk at age x, assumed to be non-random, that we will call Vx. Then the
occurrence-exposure rate Dx/Vx was shown to be an estimate of the model parameter, a
mortality rate q̂ in the binomial model, and a hazard rate µ̂ in the Poisson model1.

Forfar et al. (1988) helpfully located the old subject of parametric graduation in
a modern statistical setting, including model specification, likelihood, score function and
information, covariance matrix, model selection and parametric bootstrapping. The treat-
ment was heavily influenced by the authors’ work for the Continuous Mortality Investi-
gation Bureau (the CMIB, now CMI) particularly in respect of data collection. The
advance it represented may be gauged by comparison with contemporary texts such as
Batten (1978) and Benjamin & Pollard (1980).

1A third model was offered, identical to the Poisson model except that the occurrence-exposure rate
was taken to be an estimate m̂ of the life table quantity mx, the central rate of mortality (see Neill (1977)
for example). Since mx does not arise naturally as the parameter in any well-defined statistical model
we will not pursue this further.



50

On Models of Mortality 6

Both binomial and Poisson models are rooted in simple thought-experiments, require
no statistics beyond a first course in data analysis, and can, with qualifications, be imple-
mented in standard statistical packages such as R (R Core Team 2021). This gives them
considerable staying power.

2.2 The Rate Interval and ∆k Notation
The rate interval is an interval of age (or calendar time) on which an individual is

assigned a given age label. It is the means of assigning an age label to an individual
exposed to the risk of death and at the time of death. Note that rate intervals are only
needed with age-grouped data, not models based on individual lives. They are treated
in detail in texts such as Benjamin & Pollard (1980). We assume that the rate interval,
when we need one, is the year of age (x, x+1] defined by ‘age last birthday’. The CMI, for
another example, use the year of age (x− 1/2, x+ 1/2] defined by ‘age nearest birthday’.

We assume that the data are covered by K rate intervals and that in the abstract
these may be denoted by ∆k (k = 1, 2, . . . , K); and that a sum over all rate intervals may
be denoted by

∑
k, and a product likewise by

∏
k.

2.3 Binomial Models
The binomial model is based on the following thought-experiment: take Ex lives at

the start of a year, all alive at age x and assumed to be ‘statistically independent’ in
respect of their mortality risk. Then Ex is the measure of exposure referred to as Vx in
Section 2.1, usually here called the initial exposed-to-risk. Define Dx to be the number
who are dead at the end of the year, and qx to be the probability that a life alive at age
x dies not later than age x+ 1. Then the following are easily shown.
(a) Dx has a binomial(Ex, qx) distribution, with first two moments E[Dx] = Ex qx and

Var[Dx] = Ex qx (1− qx).
(b) As a function of parameter qx, the data (Dx, Ex) has likelihood function:

L(qx) =

(
Ex

Dx

)
qDx
x (1− qx)

Ex−Dx

∝ qDx
x (1− qx)

Ex−Dx , (7)

leading to the maximum likelihood estimate (MLE) q̂x = Dx/Ex which is asymptoti-
cally unbiased (E[q̂x] = qx) with variance Var[q̂x] = qx (1− qx)/Ex.

(c) The estimate q̂x is an estimate of qx, that is, the function value at start of the rate
interval (x, x+ 1].

Dx can be viewed as the number of successes out of Ex independent Bernoulli trials,
each with probability of success (death) equal to qx. The idea of the Bernoulli trial as the
fundamental ‘atom’ of mortality risk appears again in Section 4.5.

2.4 Poisson Models
The Poisson model depends on a different thought-experiment. An unspecified num-

ber of individuals is observed, alive during the relevant rate interval of age (x, x+1], such
that the total time alive and under observation is a non-random quantity Ec

x. Now Ec
x is
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the measure of exposure referred to as Vx in Section 2.1, usually here called the central
exposed-to-risk. A constant force of mortality µ is assumed at all ages in the rate interval
(x, x + 1]. Define Dx to be the number of observed deaths. Then the following can be
shown.
(a) Dx has a Poisson(µEc

x) distribution with first two moments E[Dx] = Var[Dx] = µEc
x.

(b) As a function of parameter µ, the data (Dx, E
c
x) has likelihood function:

L(µ) = (µEc
x)

Dx exp(−µEc
x)/Dx!

∝ exp(−µEc
x)µ

Dx , (8)

leading to the MLE µ̂ = Dx/E
c
x which is asymptotically unbiased (E[µ̂] = µx) with

variance Var[µ̂] = µ/Ec
x.

(c) Assuming a relatively even distribution of exposure over the rate interval (x, x + 1],
the MLE µ̂ estimates µx+1/2.

2.5 Terminology
Binomial and Poisson models may be described in different ways. The binomial

model admits of no conceivable time other than its own time unit; it is unambiguously a
discrete-time model. It may also be called a q-type model in honour of its conventional
parameter. The Poisson model is a candidate for a continuous-time model, although it
turns out to be an extreme representative of a whole class, see Sections 3 et seq.. It may
also be called a µ-type model in honour of its conventional parameter. See Richards &
Macdonald (2024) for both terminologies.

2.6 Assessment of the Binomial and Poisson Models

2.6.1 Feasibility of the Thought-Experiment: Binomial Model
To carry out the binomial thought-experiment we would need a homogeneous sample

of Ex individuals age x, observed to be alive or dead at age x + 1. This contrasts with
observation of (say) members of a pension scheme or life office policyholders. Real data
often includes exits for reasons other than death and not under the modeller’s control, see
(Richards & Macdonald 2024, Section 3 and Appendix) for examples. The requirements of
the binomial experiment will not be met by: (a) individuals entering observation between
ages x and x + 1; and (b) individuals leaving observation between ages x and x + 1, for
reasons other than death.

Thus we are led to ask, what is the probability of surviving over any fraction of the
rate interval? For example, an individual joining at age x − 1/2 and surviving to age x
requires the calculation of 1/2px−1/2. The binomial model gives no satisfactory answer.
Strictly, the question lies outside the bounds of the model. Even if we could implement
the thought-experiment, the model posits only the number of lives observed at the start
and end of the rate interval.

Nevertheless, an answer may be demanded, because individuals can and do join or
leave an investigation in the middle of the rate interval, see (Richards & Macdonald
2024, Section 3) for numerous examples in practice. The analyst is obliged to make some
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assumption about mortality between ages x and x+1, for which the binomial model gives
no guidance. Three popular assumptions have been:
(a) a uniform distribution of deaths;
(b) the Balducci hypothesis;
(c) a constant hazard rate.

See Macdonald (1996) or Richards & Macdonald (2024) for a discussion of these. Here
we just remark that (c), a constant hazard rate, is mathematically the simplest, fully
consistent with the Poisson model, and also consistent with modelling individual lifetimes
as in Section 3.

2.6.2 Feasibility of the Thought-Experiment: Poisson Model
The Poisson thought-experiment is not troubled by fractions of the rate interval.

Since the hazard rate is assumed to be a constant µ during the rate interval (x, x + 1],
the probability of dying during the sub-interval (x+ a, x+ b] (given alive at age x+ a, for
0 ≤ a < b ≤ 1) is 1− exp(−µ (b− a)).

The Poisson thought-experiment is not met in practice, however, for different reasons.
The distribution ofDx is Poisson only if the exposed-to-risk Ec

x is non-random, for example
pre-determined. This is not the case if: (a) the population being sampled is finite, with
known maximum size M individuals, say, because then Dx ≤ M , but P[Dx > M ] > 0
under any Poisson distribution; or (b) the exposure times of the individuals in the sampled
population are not known in advance, because then Ec

x is random. Moreover, Dx is
usually a component of the bivariate random variable (Dx, E

c
x). In such cases we call Dx

pseudo-Poisson, see Section 3. For estimation purposes, however, it behaves as a true
Poisson random variable would, see Section 3.7.

2.6.3 Occurrence-exposure Rates, Age-grouped Data and Graduation
The estimates q̂x = Dx/Ex and µ̂x = Dx/E

c
x are examples of occurrence-exposure

rates. Both they and their sample variances (Sections 2.3 and 2.4) require only the
age-grouped totals Dx and Ex or Ec

x to be reported to the analyst, rather than data on
each individual. Such totals may easily be extracted from ordinary data files used in the
business; they greatly reduce the volume of data required (which used to matter a lot);
and they reduce the risk of accidentally breaching data-protection rules (which matters
now). On the other hand they do not allow the level of checking and cleaning of the data
that is possible with individual data (Macdonald et al. 2018, Chapter 2).

If age-grouped data are prepared by someone other than the analyst, the modelling
is wholly dependent on the thoroughness and diligence of the source provider. This is
a material concern for risk-transfer transactions, such as reinsurance, bulk annuities and
portfolio transfers. If a model is to be used to price a risk transfer, the analyst should
always insist on individual records, regardless of whether the intent is to use models based
on individuals or age-grouped counts.

Occurrence-exposure rates q̂x or µ̂x are normally smoothed or graduated for practical
use. For this purpose a likelihood may be calculated as the product of the likelihoods for
each rate interval, using age-grouped data. Other, non-likelihood methods may also be
used (Forfar et al. 1988).



53

On Models of Mortality 9

2.7 Generalized Linear Models (GLMs)
To the list of properties in Sections 2.3 and 2.4 we could have added “(d) Leads to a

simple Generalized Linear Model (GLM) for graduating age-grouped mortality data.”
GLMs were introduced by Nelder & Wedderburn (1972), and contain three elements:

(a) a random component, Yx; (b) a systematic component, ηx; and (c) a link function, g.
A GLM connects the expectation of Yx to ηx via g as follows:

ηx = g(E[Yx]). (9)

The component ηx is the linear predictor; in mortality work it is a linear function
of age, x, and a corresponding covariate vector, zx. Let θ be the vector of parameters
to estimate, and let X be the corresponding model matrix. Each observation Yx has a
corresponding row in X. For a binomial GLM we have:

Yx =
Dx

Ex

, ηx = Xθ[x, ]. (10)

For a Poisson GLM with the link function g(x) = log(x) we have:

Yx = Dx, ηx = Xθ[x, ] + log(Ec
x). (11)

where [x, ] selects the row for the observation corresponding to age x.
The link function, g, is chosen by the analyst. The canonical link for the binomial

GLM is the logit, but other link functions can be used, such as the probit link. The canon-
ical link for the Poisson GLM is the logarithm, but other link functions have been used for
mortality work, such as the logit link; see (Currie 2016, Appendix 1) for implementation
details of the logit link for Poisson GLMs.

GLMs have a link with ‘classical’ actuarial modelling since one of the simplest choices
of fitted η̂x is a Gompertz function, but this does not extend to other members of the
Gompertz-Makeham family (see Forfar et al. (1988)).

GLM’s are popular because they are flexible, have nice statistical properties and are
linear in the covariates. The binomial and Poisson error structures arise naturally for
‘count’ data, and age-grouped deaths are examples of ‘counts’ so these GLMs are, in a
sense, natural candidates as mortality models. However, linear dependence on covariates,
and the canonical link functions associated with the exponential family, are restrictive,
and for large experiences we will often find better-fitting models that are not GLMs (see,
for example, the range of models included in Cairns et al. (2009)). In addition GLMs
bring us no closer to any foundational concept of a ‘mechanism’ generating mortality
data, so we do not consider them further.

3. Modelling Individual Lifetimes: The Pseudo-Poisson Model

3.1 Observation of an Individual
Suppose the ith individual is observed from age xi until age yi for total time vi =

yi − xi. Denote the interval (xi, yi] by ∆i. Observation ends because of either death or
right-censoring at age yi. Define the indicator:
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di =

{
1 if ith individual died at age yi
0 otherwise.

(12)

Then the random variable observed is the bivariate (di, vi), and the total contribution to
the likelihood of these observations, denoted by Li, is:

Li = vipxi
µdi
xi+vi

= exp

(
−
∫ vi

0

µxi+s ds

)
µdi
xi+vi

= exp

(
−
∫

∆i

µs ds

)
µdi
yi

(13)

see Table 1, or (Macdonald et al. 2018, Chapter 5).

3.2 Age Intervals and ∆i Notation
The definition of the interval ∆i depends on the observational plan and the method

of investigation. The important point is that it is time under observation of a single
individual, the ith of M individuals. Some examples are the following.
(a) The interval may be the entire period for which the ith individual was observed,

potentially spanning many years.
(b) The interval may be that part of a rate interval (for example, year of age) for which

the ith individual was under observation.
(c) The interval may be an interval of age on which the hazard rate is assumed to be

constant.

Therefore the likelihood (13) based on ∆i may constitute the whole of the ith individual’s
contribution to the total likelihood, or only part of it. We will call a contribution to a
likelihood of the form (13) a survival model likelihood, whether it forms all or part of
the ith individual’s contribution, and whether or not hazard rates are assumed to be
piecewise-constant.

3.3 Multiplication and Factorization of Survival Model Likelihoods
Survival model likelihoods in respect of the same individual over contiguous intervals,

multiplied together, give another survival model likelihood. In reverse, a survival model
likelihood may be factorized into as many factors of like kind as we please. To see the
multiplicative property, suppose the ith individual is observed on the contiguous intervals
∆1

i = (xi, zi] and ∆2
i = (zi, yi], and that indicators of death d

(1)
i at time zi and d

(2)
i at time

yi are defined analagously to di above. Then if ∆i = (xi, yi] as before:

exp

(
−
∫

∆i

µs ds

)
µdi
yi

= exp

(
−
∫

∆1
i∪∆2

i

µs ds

)
µdi
yi

= exp

(
−
∫

∆1
i

µs ds

)
µ
d
(1)
i

zi exp

(
−
∫

∆2
i

µs ds

)
µ
d
(2)
i

yi (14)
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since necessarily d
(1)
i = 0 and d

(2)
i = di if events on ∆2 are not trivially null. Whether

we regard this as factorizing a likelihood on ∆i, or multiplying two likelihoods on ∆1
i and

∆2
i , does not matter for our purposes.

3.4 Rate Intervals, Piecewise-constant Hazards and Age-grouped Data
Recall from Section 2.2 that a rate interval is denoted by ∆k. Here let ∆k be the rate

interval from integer age k to age k + 1, that is, ∆k = (k, k + 1]. Age-grouped data may
then be denoted by total deaths dk and total person-years exposure Ec

k falling within rate
interval ∆k.

It is instructive to group data on individual lives to reproduce age-grouped data,
and to compare the resulting likelihoods. This is aided by Table 2, which shows the
contributions to likelihoods of individual data for two individuals, treated three ways. The
ith individual is observed from age 47 until right-censored at age 50. The jth individual
is observed from age 47.6 until dying at age 49.3. We list contributions to the likelihood
under three combinations of observational plan and model:
(a) Rate intervals ∆k, and a constant hazard rate on each rate interval, denoted by µ∗

k.
(b) Rate intervals ∆k, and a smooth hazard rate parametrized by θ, denoted by µθ

x (for
example, a Gompertz-Makeham function).

(c) Observation of complete lifetimes on age interval ∆i, and a smooth hazard rate
parametrized by θ, also denoted by µθ

x.

The contributions are shown in Table 2. In obvious notation, we may denote the
contributions to the likelihoods under (a), (b) and (c) above by L∗

i,k, L
θ
i,k and Lθ

i =
∏

k L
θ
i,k

respectively. Likewise, collecting all contributions to rate interval ∆k in columns (a) and
(b), we may define the total likelihood contributed by ∆k by L

∗
k =

∏
i L

∗
i,k and Lk =

∏
i Li,k

respectively. This leads to the following observations.
(a) It is obvious from columns (b) and (c) that for any individual, the likelihood over the

complete lifetime is the product of the likelihoods over each rate interval, see Section
3.3. In fact we have incorporated this in the notation, Lθ

i =
∏

k L
θ
i,k. It makes no

difference if we split the the individual lives data and present them by rate interval.
But this does not lead to any simplification, and age-grouped totals dk and Ec

k play
no part, because of the smooth hazard rate in the integrands.

(b) Each entry in column (a) can be regarded as approximating its partner in column (b).
For example in the third and sixth lines, we approximate µθ

49+s by µ∗
49 for 0 ≤ s < 1;

we show the sixth line below:

exp

(
−
∫ 0.3

0.0

µθ
49+s ds

)
µθ
49.3 ≈ exp

(
−
∫ 0.3

0.0

µ∗
49 ds

)
µ∗
49 = exp (−0.3µ∗

49)µ
∗
49. (15)

Collecting together all such terms in µ∗
49 we get the total likelihood:

L∗
49(µ

∗
49) = exp (−µ∗

49 E
c
49) (µ

∗
49)

d49 (16)
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in which the age-grouped totals do appear. Comparing equations (16) and (8), we see
that the former is functionally identical to the likelihood from the Poisson model, and
yet no assumption about Poisson random variables or distributions has been made in
this section. In other words, the Poisson-like nature of the likelihood arises from the
fundamental nature of modelling individual lifetimes.

3.5 Individual versus Age-Grouped Data for Multiple Lives
Table 2 illustrates how the individual lifetime model is related to age-grouped data,

based on rate intervals, exactly without using any approximations. Indeed, columns
(b) and (c) show that labelling the data by individual i or by rate interval k is merely
a rearrangement. Specifically, the ith individual contributes Lθ

i,k, possibly null, to the
likelihood in rate interval k (fourth column). The outer form of the total likelihood,
denoted by Lθ, then depends simply on the order in which we take products, as the
following identities show:

Lθ =
∏

i

Lθ
i =

∏

i

∏

k

Lθ
i,k =

∏

k

∏

i

Lθ
i,k =

∏

k

Lθ
k = Lθ. (17)

This informal statement based on Table 2 (‘proof-by-example’) of course needs to be
demonstrated properly. Doing so with the notation to hand is surprisingly detailed,
though elementary, and is delegated to Appendix 1. A much simpler proof will be shown
when the notation of Section 4 is available (Section 4.7).

3.6 The Rôle of Occurrence-exposure Rates
Wemay arrive at the likelihood based on the age-grouped data (dk, E

c
k) in two different

ways.
(a) We could use the Poisson model with parameter µ∗

k E
c
k (Section 2.4) for rate interval

∆k.
(b) Within the individual lives model, we could assume that the hazard rate is piecewise-

constant with value µ∗
k on rate interval ∆k. This means assuming that the parameter

θ is the vector of hazard rates µ∗
k.

In either case, on rate interval ∆k, we have a single parameter, which we denote by
µ∗
k, and a likelihood that we denote by L∗

k(µ
∗
k) = exp(−µ∗

k E
c
k) (µ

∗
k)

dk . In total we have a
K-parameter model with likelihood

∏
k L

∗
k(µ

∗
k), from which the parameters are estimated

independently by the occurrence-exposure rates dk/E
c
k, which we denote by µ̂∗

k. That is
as far as the probabilistic model takes us.

In traditional actuarial terminology, the µ̂∗
k are ‘crude’ rates which require to be

smoothed or graduated, using no more than the available age-grouped data (Benjamin
& Pollard 1980). A convenient way of doing so is to use: (a) the likelihood function∏

k L
∗
k(µ

∗
k); (b) a parametric function µθ

x for the hazard rate, of much lower dimension
than K; and (c) to connect the two with an assumption that µ̂∗

k estimates µθ
xk
, for some

xk ∈ ∆k, for example µ̂∗
k estimates µθ

k+1/2. Note that this smoothing procedure is not part

of the probabilistic model, despite its use of the likelihood function. Forfar et al. (1988)
show that it is approximately equivalent to the much older minimum-χ2 method.
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In either case, again, the age-grouped quantities approximate exact quantities as
follows:

(µ∗
k)

dk ≈
∏

di,k=1

µθ
yi

and µ∗
k E

c
k ≈

∑

i

∫

∆i,k

µθ
s ds (18)

where di,k is the number of deaths (0 or 1) befalling the ith individual in rate interval ∆k,
and ∆i,k = ∆i ∩ ∆k (possibly ∅). Therefore, inference based upon age-grouped data is
close, but not identical, to inference based upon the individual lives data.

The crude hazard rates µ̂∗
k, or more accurately the expected deaths based upon them,

µ̂∗
k E

c
k, may be used in forming statistics such as deviances, used in testing the fit of a

graduation (Forfar et al. 1988, Benjamin & Pollard 1980, Macdonald et al. 2018).

3.7 Pseudo-Poisson Models
The various likelihoods that appear in this section, see Table 2, are all Poisson-like,

and if a piecewise-constant hazard rate is assumed, indistinguishable from a true Poisson
likelihood, an observation that goes back to the earliest work on inference in Markov
models, see for example Sverdrup (1965), Waters (1984). However, there are no Poisson
random variables. In the likelihood (13): (a) di is either 0 or 1, and does not range over
the non-negative integers; (b) vi is random, not deterministic; and (c) di and vi are not
independent, the random variable is the bivariate (di, vi).

Many authors suppose, as we did in Section 2.4, that the number of deaths in some
model has a Poisson distribution, but without ensuring, as we did, that the exposure
times would be non-random; more often the observation of random death times ensures
the opposite. This conceptual error is almost always immaterial for inference, precisely
because the Poisson likelihood is of the correct form for a survival model, although the
survival model is not Poisson. Where it matters is in misdirecting us when we come to
extend the survival model, including allowing for: (a) truncation and censoring; (b) more
complicated life histories, including multiple decrements; (c) calculating residuals when
the expected number of deaths is small; and (d) statistics for multiple lives, see Section
3.5 and Appendix 1.

We suggest it would be clearer and less confusing if the term pseudo-Poisson was
adopted, to describe the great majority of models for death counts that appear in the
literature.

3.8 Covariates
Covariates may be introduced by defining a vector zi of covariates for the ith individ-

ual and letting the hazard rate be a function µ(x, zi) of age and covariates. A common way
to introduce such a dependency is to define a vector β of regression coefficients such that
the hazard rate is a function µ(x,βTzi) of age and a linear combination of the covariates.
Further simplification is achieved if the hazard rate factorizes as µ(x, zi) = µx × g(zi),
the product of an age dependent hazard rate µx (called the baseline hazard) and some
function g of the covariates; then the hazard rates of any two individuals of the same
age are always in the same proportion, called proportional hazards. Finally, the most
common choice of g is an exponential function of a linear combination of the covariates,
µ(x, zi) = µx × exp(βTzi), which has proportional and non-negative hazards as well as a
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Table 3: Three stages in adding structure to a hazard rate that is a function µ(x, zi)
of age x and a vector zi of covariates for the ith individual. Each stage is increasingly
restrictive, from the most flexible model in Stage 0 to the most restrictive in Stage 3.

Stage Form of µ(x, zi) Description

0 µ(x, zi) General function of x and zi

1 µ(x,βTzi) Function of age and linear combination of covariates
2 µx × g(zi) Proportional hazards
3 µx × exp(βTzi) Basis of the Cox model (Cox 1972)

log-linear dependence on covariates. These steps in adding structure to the hazard rate
are summarized in Table 3.

The last hazard structure in Table 3 is popular in medical statistics, where it is known
as the Cox model, because the baseline hazard can be ignored and only the regression
coefficients need to be estimated, by the procedure known as partial likelihood (see Ander-
sen et al. (1993)). However, actuaries usually wish to estimate the whole model, baseline
hazard included, whatever the form of the hazard rate. Then the full likelihood (40) from
Appendix 1 becomes:

L =
M∏

i=1

Li =
M∏

i=1

K∏

k=1

∏

∆j⊆∆k

[
exp

(
−
∫

∆j

µ(s, zi) ds

)]ei,j

µ(wj, z
i)di,j . (19)

Clearly any of the hazard rates in Table 3 may be substituted into the likelihood (19).
However inspection of the innermost elements of (19), integrals over intervals ∆j ⊆ ∆k,
shows that, even if the hazard rate factorizes as in Stages 2 and 3 of Table 3, these factors
cannot be collected together to form likelihoods Lk over rate intervals. See also the written
comments by A. D. Wilkie in the discussion of Richards (2008).

4. Dynamic Life History Models

4.1 The Anatomy of a Survival Probability
We begin with a closer examination of the multiplicative property of survival proba-

bilities, usually expressed as:

s+tpx = tpx spx+t = spx tpx+s. (20)

We can apply this repeatedly to factorize tpx, with n a positive integer, as follows:

tpx =
n−1∏

k=0

t
n
px+ kt

n
. (21)

This motivates the first of two questions: what happens as n → ∞? The second (related)
question is: how can we express or represent events in the life history as a function of
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passing time? We have a compact notation (tpx, tqx and so on) for the probabilities of
events in the life history, but no such notation for the events themselves; generally we
must express events somewhat clumsily in words. We consider these questions in turn in
the next two sections.

4.2 The Product-integral Representation of a Survival Probability
From the heuristic hpx ≈ 1− µx h ≈ exp(−µx h), for small h, we have the important

product-integral representation as n → ∞ and 1/n → 0+:

exp

(
−
∫ t

0

µx+s ds

)
= tpx (22)

= lim
n→∞

n−1∏

k=0

t
n
px+ kt

n
(23)

≡
∏

s∈(0,t]
(1− µx+s ds), (24)

see Appendix 2 or, for example, Andersen et al. (1993). The product-integral has the
same Π symbol as an ordinary product over a finite or countable number of terms, but is
distinguished (here) by the presence of ds in the integrand and by the variable s ranging
over an interval of the real line, s ∈ (0, t]. Then by differentiation of tpx, the density
function of the random future lifetime Tx, denoted by fx(t), is:

fx(t) = tpx µx+t (25)

= exp

(
−
∫ t

0

µx+s ds

)
µx+t (26)

=
∏

s∈(0,t]
(1− µx+s ds)µx+t. (27)

Identities (271) and (27) are important in parametric mortality models, because they
allow the likelihood to be specified entirely in terms of the hazard rate.

4.3 The Counting Process Representation of the Data
Suppose the ith individual has future lifetime T i

0, a non-negative random variable.
Define the process N i(x) = I{T i

0≤x}. This has value 0 as long as the ith individual is alive,

and value 1 if they are dead (including at exact age T i
0). Thus N

i(x) ‘counts’ the number
of deaths up to and including age x.

Associated with N i(x) is the indicator of survival, denoted by Y i(x) and defined as:

Y i(x) = I{ith individual alive at age x−} = I{T i
0≥x}. (28)

Thus Y i(x) is almost, but not quite, equal to 1 − N i(x). Both have value 1 at exact
age x = T i

0, the age at death (see Table 4). N i(x) is right-continuous, while Y i(x) is
left-continuous. This is for technical reasons when forming integrals.
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Figure 1: Sample counting-process representations of lifetimes. The first row is a life that
enters observation at age 0 and is observed until dying at age 81. The second row is a life
that enters observation at age 35 (left-truncation) and leaves at age 45 (right-censoring),
enters observation again at age 55 (left-truncation) and is then observed until death at
age 72.
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Note that N i(x) represents exactly the same information as T i
0, but in the form of

a stochastic process instead of a random variable. It is purely descriptive, no proba-
bilities or hazard rates appear in its definition, hence we refer to the counting process
‘representation’, not the counting process ‘model’.

Mention the word ‘process’ to an actuary under the age of about fifty, and it will
trigger thoughts of Brownian motion, Itô calculus, stochastic integrals and option pricing.
While important and necessary in its place, a counting processes carries none of that
baggage2. It really is nothing but a parsimonious way to represent an event happening
at a random time, by means of zeros and ones. It must have been re-invented hundreds
of times by computer programmers needing to represent events in binary.

Nevertheless, with N i(x) and Y i(x) representing the data, and µx as a model of the
underlying ‘mechanism’ generating the data, we have the key to many problems of survival
models.

4.4 The Multiplicative Model
Just above, we called µx the “. . . model of the underlying ‘mechanism’ generating

the data . . .”, referring of course to the heuristic, that the probability of death occurring
between ages x and x+h, conditional on not having occurred beforehand, is approximately
µx h (for small h). In fact, we make a small adjustment with a truly profound effect.

Define the stochastic hazard rate at age x to be the product Y i(x)µx, also called the
Aalen multiplicative model (Andersen et al. 1993) (both names derive from the fact that
the hazard rate is multiplied by a stochastic indicator). This represents a hazard rate
tailored to the ith individual, that is automatically switched ‘on’ while they are alive and
‘off’ at any other time. Where before, we have had to qualify almost everything we said
with the mantra “conditional on the life being alive at age x” or the like, this is taken care
of by the stochastic hazard rate. This explains the title ‘Dynamic Life History Models’ of
this section; the hazard rates that govern the evolution of the life history are themselves
stochastic and changed by events.

4.5 The Stochastic Probability Function: Back to Bernoulli
The probability function of the life history up to age x, from equation (27), in its

product-integral form, can be denoted by f i
0(x) and written as:

f i
0(x) =

∏

s∈(0,x]

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (29)

This says, heuristically, that times when the ith individual does not die (dN i(s) = 0)
contribute a survival probability (1 − µs ds) to the product, while the moment of death
(dN i(s) = 1) contributes the death probability µs ds (but by convention the ds is not
displayed, as f i

0(s) is then a density function). (In this case the presence of Y i(s) makes
no difference, because the exponents 1 − dN i(s) and dN i(s) do the job by themselves,
but we shall see why it is present in Section 4.6 below. It does matter, however, that
Y i(x) = dN i(x) = 1 when x is the age at death.) Table 4 (‘Untruncated/Uncensored’)

2At least until the Central Limit Theorem is encountered, in which the limiting process is an Itô
process, see Andersen et al. (1993).
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Table 4: Contributions to the probability function of the infinitesimal Bernoulli trials
(equation (29)) from elements of the observed life history, in the absence of left-truncation
and right-censoring, and in their presence. Technical point: N i(s) has right-continuous
sample paths and Y i(s) has left-continuous sample paths (Section 4.3), so at the time of
an observed death N i(s) = Y i(s) = 1.

Period/Time Observed Y i(s) N i(s) dN i(s) df i
0(x)

Untruncated/Uncensored

Before death Yes 1 0 0 (1− Y i(s)µs ds)
Time of death Yes 1 1 1 Y i(s)µs ds
After death Yes 0 1 0 1

Truncated/Censored

Before death No 0 0 0 1
Before death Yes 1 0 0 (1− Y i(s)µs ds)
Time of death No 0 1 1 1
Time of death Yes 1 1 1 Y i(s)µs ds
After death No 0 1 0 1
After death Yes 0 1 0 1

shows the contributions to the likelihood (29) at different points in the observed life
history.

In other words, at every time s when the ith individual is alive there is an infinites-
imal Bernoulli trial with probability of death Y i(s)µs ds. See Gill (1994) on an infinite
Bernoulli process. Some authors make product-integration the starting point of survival
analysis (Cox & Oakes 1984, Lancaster 1990, Kalbfleisch & Prentice 2002). Actuaries
are so strongly oriented towards binomial and Poisson models, however, that we have
approached product-integration from there.

4.6 Left-truncation and Right-censoring
Left-truncation arises when the first part of a lifetime is unobserved. It is a fun-

damental characteristic of actuarial data, given that the vast majority of insured lives
only become known to the insurer as adults. Right-censoring arises when the lifetime
leaves observation before the event of interest (such as death) has occurred. There are
many causes of right-censoring; Richards & Macdonald (2024) discuss a wide range of
right-censoring events in the context of pensions and annuities.

Left-truncation and right-censoring can, in most cases, be allowed for very simply by
adjusting the definition of the indicator Y i(s), as follows:

Y i(s) = I{ith individual alive and under observation at age s−}. (30)

With this change, everything said in Sections 4.1 to 4.5, including the important repre-
sentation in equation (29), remains valid. Table 4 (‘Truncated/Censored’) shows the
contributions to the likelihood (29) at different points in the observed and unobserved life
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history, where Y i(s) indicates the presence of left-truncation and right-censoring by tak-
ing the value 0. Equation (29) as derived in Section 4.3 describes a purely mathematical
probabilistic model. Substituting the indicator processes in equation (30) turns it into
the basis of a statistical model involving data.

Figure 1 shows values of Y i(x) and N i(x) for two individuals. In the first row, we
see observation of the complete lifetime T i

0 from birth to death, here at age 81. This
illustrates the Y i(x) of equation (28). In the second row, one who enters observation at
age 35 (left-truncation) and leaves without dying at age 45 (right-censoring), then re-
enters observation at age 55 (left-truncation) and dies at age 72. This could happen if, for
example, extracts from two different policy files are found during data cleaning to refer
to the same individual. This illustrates the Y i(x) of equation (30).

The impact of this change in simplifying the mathematics is more than its apparent
innocence would suggest. An example will be seen in Section 4.7.

4.7 Example: Individual versus Age-grouped Data for Multiple Lives Again
In Section 3.5 and Appendix 1 we showed that the likelihoods for individual and

age-grouped data were the same, and pseudo-Poisson in form. The method was to derive
contributions to the likelihood arising from the smallest possible ‘units’ of exposure to
risk, namely the intersection of the ith individual’s lifetime and the kth rate interval. The
total likelihood was then the product of all these ‘unit’ likelihoods over all individuals and
all rate intervals. The proof in Appendix 1 is not technically difficult, but is burdened
with the notation needed to define intervals and their intersections. By way of contrast
we give below an alternative proof using the counting process representation of the data.

The contribution of the ith individual to the likelihood is:

Li =
∏

s∈(0,∞]

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (31)

Therefore the total likelihood is:

L =
∏

i

Li =
∏

i

∏

s∈(0,∞]

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (32)

Split the age range into rate intervals ∆k, noting that there is no contribution outside the
age range [r0, rK ]:

L =
∏

i

K∏

k=1

∏

s∈∆k

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (33)

Now change the order of the two outer products:

L =
K∏

k=1

[∏

i

∏

s∈∆k

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)

]
=

K∏

k=1

Lk (34)
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noting that the terms in large brackets in (34) are the contributions from each rate inter-
val3, which we denote by Lk.

The simplicity and directness of the proof above arises from the simplicity of the range
of integration of the innermost integral, namely 0 to ∞ instead of an interval defined by
the intersection of two other intervals, see Appendix 1. This reinforces an observation
by Lidstone (1905) to the effect that it may be simpler to investigate what happens
moment-by-moment, than over an extended interval:

“. . . it will be found that the formulae are in reality simplified through the absence
of any distinction between the beginning and end of the momently intervals under
consideration.” (Lidstone 1905)

Of course, the work in actually computing such complicated integrals is unchanged,
but the greater ease of comprehension makes the task of the theorist (and the reader!)
much easier.

4.8 A Classification of Mortality Models for Actuarial Use
Figure 2 illustrates how the models underlying survival analysis and occurrence-

exposure rates used by actuaries all derive from Bernoulli trials over different time in-
tervals.
(a) The upper branch goes through the instantaneous Bernoulli trial with parameter

µx dx, which through product integration over the age interval ∆i and simple ag-
gregation over M > 1 individuals leads to the survival model based on individual
lives.

(b) Similarly, product-integration restricted to the rate interval ∆k, and a constant hazard
rate, leads to the pseudo-Poisson model.

(c) The Poisson model also belongs to the upper branch, but would require a special (and
unlikely) observational plan to ensure that Ec

x is deterministic and M is random. An
example would be to replace each individual who dies with an identical individual
until Ec

x reaches a pre-determined level (Scott 1982).
(d) The lower branch goes through the Bernoulli trial with parameter qx and leads to the

binomial model with M > 1 individuals.

Note that both branches lose information about which individuals died in going from
the individual model (M = 1) to the collective model (M > 1) but this will not matter for
inference since the likelihood will be changed only by a factor not involving the parameter
(for example, in the lower branch, a binomial coefficient). Only in the lower branch,
however, is information also lost about the times of death, and therefore the true total
of person-years lived. This is genuine loss of information which matters for inference,
leading us to prefer any of the models in the upper branch over the binomial model.

3A.D.Wilkie, in written comments in the discussion of Richards (2008), advanced a similar argument
based on “small age steps h” and a quasi-indicator function similar to Y i(x); the argument given above
is the same as in (Macdonald et al. 2018, Section 5.7).
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Figure 2: Family tree of models, showing the derivation of individual models, and collec-
tive models for individual lives and age-grouped data, (in bold) from the basic Bernoulli
trial. M is the number of individuals observed, ‘M unrestricted’ means that M can be
either random or deterministic. The tree has two branches, one at the top leading to
continuous-time models, including pseudo-Poisson and Poisson models, and one at the
bottom leading to the discrete-time binomial model. The dotted arrow indicates that
the Poisson model requires the imposition of an observational plan that ensures Ec

x is
deterministic, which is unlikely to be realized in practice.
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Originating
state (1)

State 2

State 3

...

State K

µ12(x)

µ13(x)

µ1K(x)

Figure 3: Multiple-decrement model. Note that states 2, 3, . . . , K are absorbing states
with no transitions out once entered.

4.9 Extension to Multiple Decrements
Equation (29) is easily extended to multiple-state models, with a set of states labelled

1, 2, . . . , K. Omitting detailed definitions, process Y i
j (x) indicates observed presence in

state j, and process N i
jk(x) (j ̸= k) counts transitions from state j to state k, governed by

stochastic intensity Y i
j (x)µjk(x), and everything proceeds as before. We will not pursue

this in its full generality, referring the reader to Macdonald et al. (2018) (elementary) or
Andersen et al. (1993) (advanced), but the simplicity of this extension is an attractive
feature of the counting process representation.

However we will sketch briefly the extension to multiple decrement models, since this
has been a staple of actuarial textbooks. We have one originating state, labelled 1, in
which all life histories begin, and K−1 decrement states, labelled 2, 3, . . . , K. Transitions
are possible from state 1 to any decrement state, governed by intensity Y i

1 (x)µ1k(x) for
the ith individual4. Figure 3 illustrates this model. Intensities out of a given state are
additive, so exit from state 1 is represented by the counting process N i

1•(x) = N i
12(x) +

. . . + N i
1K(x), governed by the total intensity, denoted by µ1•(x), defined as µ1•(x) =

µ12(x) + . . . ,+µ1K(x). The probability function of the life history can be expressed in
two rules:

Rule 1: The time of exit of the ith individual from state 1 has probability function similar
to equation (29):

f i(x) =
∏

s∈(0,x]

(
1− Y i

1 (s)µ1•(s) ds
)1−dN i

1•(s)
(
Y i
1 (s)µ1•(s)

)dN i
1•(s). (35)

Rule 2: Conditional on the ith individual exiting state 1 at age x, the probability that
the state entered was k is µ1k(x)/µ1•(x), k = 2, . . . , K.

Therefore the model is specified completely by a product of infinitesimal Bernoulli trials
as in Rule 1, and a simple ratio of intensities as in Rule 2.

If, however, the analyst begins by specifying a binomial-type model, for example
based on a time unit of a year, then it is not easy to obtain a convincing representation
of behaviour over shorter time periods, and there is certainly no unique solution. The

4We could rule all other transitions to be impossible by decree, or assume that all intensities µjk(x)
with j ̸= 1 are zero.
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classical actuarial approach (see Neill (1977) or Bowers et al. (1997)) involves specifying
a hypothetical model of each decrement acting alone, leading to a ‘gross’ hazard rate
acting in the presence of the other decrements, and a ‘net’ hazard rate acting in their
absence5. Except in some special cases, further progress is impossible unless ‘gross’ and
‘net’ hazard rates are assumed to be equal, but then since ‘gross’ hazard rates can be
shown to be those of the Markov multiple-state model anyway, the modeller is drawn
ineluctably towards that destination. Going into more detail would require too much
notation, see (Macdonald et al. 2018, Chapter 16).

This illustrates vividly the contrast between the simplicity of the model specified
at the ‘micro’ level, from which, by aggregation, behaviour at the ‘macro’ level can be
deduced; and the perils of specifying the model at the ‘macro’ level, and then trying to
disaggregate it to deduce or intuit behaviour on smaller scales.

4.10 Further Applications
We mentioned in Section 4.9 the extension of the counting process representation to

multiple-state models, see Macdonald et al. (2018). We mention here other advances and
applications based on counting processes, which can be found in the references below.
(a) counting process compensators, martingales, stochastic integrals and central limit

theorems (Andersen et al. 1993, Chapter III);
(b) non-parametric estimates including the Nelson-Aalen and Kaplan-Meier estimates

(Andersen et al. 1993, Chapters IV.1 and IV.3), (Kalbfleisch & Prentice 2002);
(c) non-parametric kernel smoothing methods (Andersen et al. 1993, Chapter IV.2);
(d) semi-parametric regression models including the Cox model and partial likelihoods

(Andersen et al. 1993, Chapter 7), (Kalbfleisch & Prentice 2002);
(e) log-rank comparison tests of survival models (Andersen et al. 1993, Chapter 5),

(Kalbfleisch & Prentice 2002);
(f) stochastic reserving models in life insurance Norberg (1991); and
(g) stochastic models of surplus in life insurance, including Hattendorff’s theorem (Ramlau-

Hansen (1988a,b), Norberg (1991)).

5. Conclusions

In search of sound foundations for mortality models, we began with binomial and
Poisson models for grouped counts (Section 2), the basis of traditional graduations of
mortality data for actuarial use. Both being models for ‘count’ data — the number of
deaths during a time period, typically a year — they naturally invite questions about
mortality at a smaller scale, over a fraction of the time unit. The Poisson model has
an answer; its parameter is a hazard rate µx, assumed to be constant over the time
period, and that defines mortality over short time intervals h as h → 0+. The binomial
model has no such answer; it is up to the modeller to assume how mortality behaves
over shrinking time intervals h as h → 0+. While this is unsatisfactory, the binomial

5Thanks to one of the more confusing legacies of actuarial nomenclature, ‘gross’ and ‘net’ hazard
rates are traditionally called ‘dependent’ and ‘independent’ forces of decrement, which have absolutely
no connection to statistical notions of dependence and independence.
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model does decompose into a sum of Bernoulli trials, each representing the mortality of
an individual over the time period.

Modelling the lifetime of a single individual (Section 3) gives the vital insight that
the associated likelihood, as in equation (13), has the same form as a Poisson likelihood.
Indeed we get the same Poisson-like likelihood if we model individual life histories, or
group the data by age (Section 3.5), but in neither case do Poisson random variables
feature as part of the model. That is, inference proceeds correctly as if the death counts
we observe were Poisson random variables, but they are not. We suggest that all such
mortality models based on age-grouped data — which includes most published models —
should be called pseudo-Poisson models.

Finally, we identify the fundamental element of a mortality model as the infinitesimal
Bernoulli trial; heuristically, an individual alive at age x will die in small time h with
probability hµx, or survive with probability 1 − hµx. To write down probabilities of
events over extended time intervals, we need to know how to aggregate such trials, and
that requires three ideas new to most actuaries:
(a) the product-integral (Section 4.2 and Appendix 2), as the method of aggregating

probabilities of infinitesimal Bernoulli trials over extended intervals;
(b) counting processes (Section 4.3), giving us the natural notation to describe the events

in a life history; and
(c) the stochastic hazard rate Y i(x)µx tailored to the life history of the ith individual

including left-truncation and right-censoring (Section 4.6).

In conclusion, equation (29), with Y i(x) as in equation (30), is the ‘atom’ of a
‘continuous-time’ survival model, with the qualities listed in Section 1.5 and reproduced
below.
(a) It is irreducible, in the sense that it is composed of (infinitesimal) Bernoulli trials.
(b) It is based on behaviour at the ‘micro’ time scale.
(c) It is based on individual lives.
(d) Aggregated, over time and over individuals, it explains the Poisson-like nature of

likelihoods, therefore estimation based on the collective at the ‘macro’ time scale.
(e) It allows for left-truncation and right-censoring.
(f) It is easily extended to multiple-decrement and multiple-state models.
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Appendix 1

The Likelihoods for Individual and Age-Grouped Data

We show that the likelihood obtained by modelling individual lifetimes (see Section
3.5) is the same as that obtained from age-grouped data for each rate interval. To do so
we use the factorization in Section 3.3. Note three points before we begin:
(a) The equality of likelihoods means that inference has the same results using either

approach, although each may have advantages for other reasons.
(b) We show equality assuming an arbitrary form of hazard rate µx, making no parametric

assumptions. This includes as a special case the assumption of piecewise-constant
hazard rates, constant on each rate interval, usually made in conjunction with the
assumption that total deaths Dx in each rate interval are Poisson random variables.

(c) The result here, which resides in the equality of expressions in equations (40) and
(41), is quite detailed, and follows by selecting elements of three different partitions
of the age range in precise ways. This contrasts with Section 4.7, where the same result
follows as an easy consequence of the definitions in the counting process representation
of the data.

Suppose we have M lives, not all identical, the ith individual being observed between
ages xi and xi+vi and the random variable di indicating death or censoring at age xi+vi.
Define yi = xi + vi, and let ∆i be the interval (xi, yi] on which the ith individual is
observed.

We wish to introduce a set of rate intervals and write down contributions to the
likelihood for the ith individual over those rate intervals that intersect ∆i. We need some
detailed definitions, which we introduce in three steps.
Step 1: Intervals: Let the sequence of ages r0 < r1 < . . . < rK , with r0 ≤ mini xi and
rK ≥ maxi yi, define the rate intervals ∆k = (rk−1, rk] (k = 1, . . . , K). Let w0 < w1 <
. . . < wJ be the sequence formed by the (ordered) union of the three sequences x1, . . . , xM ,
y1, . . . , yM and r0, . . . , rK and define ∆j = (wj−1, wj] (j = 1, . . . , J). Hence we have rate
intervals ∆k, and the ith individual exposed to risk on interval ∆i, and the intervals ∆j are
formed from the intersections of all ∆i and ∆k. Figure 4 illustrates these three sequences
of intervals.
Step 2: Indicators: For (j = 1, . . . , J), define the sequences of indicators:

ei,j =

{
1 if ∆j ⊆ ∆i

0 otherwise
(36)

and:

di,j =

{
di if wj = yi
0 otherwise.

(37)

Therefore ei,j indicates that the ith individual was exposed to risk during (wj−1, wj], and
di,j indicates death or censoring of the ith individual at age wj.
Step 3: Likelihoods: We can now replace likelihood (13) with the following:
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r0 r1 r2 r3 r4 Rate intervals ∆k = (rk−1, rk]

w0 w1 w2 w3 w4 w5 w6 w7 w8 Exposure intervals ∆j = (wj−1, wj]

x1 y1 Individual i = 1: ∆i = (x1, y1]

x2 y2 Individual i = 2: ∆i = (x2, y2]

...

Age increases from left to right

Figure 4: Rate intervals, individual observations and exposure intervals. Rate-interval
boundaries, {rk}, are set by the analyst, and here are not necessarily integers, nor evenly
spaced. The data are paired ages of the start and end of individual observations, (xi, yi).
The set of exposure-interval boundaries, {wj}, is defined as the ordered union of {rk},
{xi} and {yi}. One consequence is that each exposure interval ∆j is always completely
contained within a corresponding rate interval ∆k.

Li =
J∏

j=1

[
exp

(
−
∫

∆j

µs ds

)]ei,j

µdi,j
wj

(38)

and collect together all those intervals ∆j that are part of the rate interval ∆k:

Li =
K∏

k=1

∏

∆j⊆∆k

[
exp

(
−
∫

∆j

µs ds

)]ei,j

µdi,j
wj

. (39)

The payoff from all this careful defining of points and intervals comes when we form
the total likelihood over all M individuals, denoted by L:

L =
M∏

i=1

Li =
M∏

i=1

K∏

k=1

∏

∆j⊆∆k

[
exp

(
−
∫

∆j

µs ds

)]ei,j

µdi,j
wj

. (40)

Then by reversing the order of the two outer products, we can collect together contribu-
tions to each rate interval instead of contributions to each lifetime:

L =
K∏

k=1

M∏

i=1

∏

∆j⊆∆k

[
exp

(
−
∫

∆j

µs ds

)]ei,j

µdi,j
wj

=
K∏

k=1

Lk (41)

where we define Lk as:
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Lk =
M∏

i=1

∏

∆j⊆∆k

[
exp

(
−
∫

∆j

µs ds

)]ei,j

µdi,j
wj

, (42)

which we recognize as the total contribution for rate interval ∆k. The desired equality is
shown above, namely

∏
i Li =

∏
k Lk. We note that the intricacy of the definitions and

the argument (including the presence of two sets of indicators di,j and ei,j) stems from the
need to handle both points and intervals of time, in different combinations. This need is
largely abolished, as far as algebra is concerned, by the definition of the process Y i(x) in
Section 4.3.

Appendix 2

The Product-integral

The ordinary integral is familiar to actuaries, the product-integral less so. However,
every time an actuary multiplies survival probabilities of the form tpx, she uses a product-
integral. It is clear that she uses an ordinary integral, and moreover uses its additive
property, since:

t+spx = exp

(
−
∫ t+s

0

µx+r dr

)

= exp

(
−
∫ t

0

µx+r dr −
∫ t+s

t

µx+r dr

)

= exp

(
−
∫ t

0

µx+r dr

)
exp

(
−
∫ s

0

µx+t+r dr

)

= tpx spx+t. (43)

This suggests the exponential function as a link between functions with additive and
multiplicative properties, and indeed it is. Start with the following identity, proved in
most courses on real analysis (see (Hardy 1992, pp. 410–411)):

lim
n→∞

(
1 +

1

n

)n

= e. (44)

More generally, assuming we may exchange logarithms and limits and then taking just
the first-order term of the Taylor expansion log(1+ s) = s− s2/2+ s3/3− . . . (convergent
on −1 < s ≤ 1):

log lim
n→∞

(
1 +

s

n

)n

≈ lim
n→∞

n
s

n
= s (45)

implying (44) and more. This is homogeneous, in the sense that n×s/n =
∑n

1 s/n is a sum
of n equal summands. Suppose we have a well-behaved function f(s) on an interval (a, b].
Partition the interval into n equal sub-intervals denoted by ∆1 = [a, a + h), . . . ,∆n =
(b−h, b] where h = (b−a)/n, and let f(sk) be the function value at an arbitrarily chosen
sk ∈ ∆k (k = 1, 2, . . . , n). Then by the same reasoning:
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log lim
n→∞

n∏

k=1

(1 + f(sk)h) ≈ lim
n→∞

n∑

k=1

f(sk)h =

∫ b

a

f(s) ds. (46)

It only remains to replace the interval length h with the more general ds in the limit and
exponentiate both sides, giving us the important representation:

∏

s∈(a,b]

(
1 + f(s) ds

)
= exp

(∫ b

a

f(s) ds

)
. (47)

Choose the function f(s) = −µx+s on the interval (0, t] as in a survival probability, and
we have the product-integral representation of the familiar identity:

∏

s∈(0,t]

(
1− µx+s ds

)
= exp

(
−
∫ t

0

µx+s ds

)
= tpx (48)

which is equation (24).
The above is intuitive and heuristic; for a rigorous account see Gill & Johansen (1990)

and references therein.
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