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The Lee-Carter Family

S1. CMI assured lives data, ages 40-89, years 1950-2005.

S2. Perspective plot of log µ̂ij = log(dij/eij).

S3. Log(mortality) averaged over year. This is the famous Gompertz line (approximately).

S4. Log(mortality) averaged over age. This is what all the fuss is about. Average mortality
is ‘heading south’ relentlessly.

S5. The Lee-Carter model (1992) is the father of all stochastic forecasting models. There
are a few things to note about it:

(a) It is designed to forecast the whole table. It does this by reducing the 2-dimensional
forecasting problem to a 1-dimensional problem. The parameters α, β and κ are
estimated. The age parameters α and β are then held fixed and κ is forecast.
The great strength of the Lee-Carter is its stability; its great weakness is that it
imposes a very rigid structure on the mortality table which may not always be
suitable. In contrast, the 2-d P-spline methods offer a more flexible structure but
can suffer from instability, particularly if the year signal is weak.

(b) The Lee-Carter model is over-parameterized and two constraints are required
to fix the estimates. The forecasts are invariant with respect to the particular
constraints used.

S6. The estimate of α looks like average mortality by age in S3 and the estimate of κ has
the same shape as the average mortality by year in S4. Notice that estimates of all
three parameters follow an identifiable smooth pattern (which we’ll take advantage of
shortly).

S7. An ARIMA model has been used to forecast κ although a simple drift model could
also be used (see Forecasting with Time Series later). The forecast comes with CIs.

S8. Notice that the shape of the forecasts is the same for all ages (the same as the shape
of κ in S7).

S9. On the evidence of S6 (and S10) we can smooth some/all of the parameters. S9 reminds
us how this works. The coefficients, unconstrained (solid triangles) and constrained
(solid green squares) act on the B-splines in the lower panel to raise or lower each
B-spline; these are then added together to give the smooth curves - wiggly when
unconstrained and smooth when constrained.
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S11. Mix and match smoothing. Delwarde, Denuit and Eilers (DDE) (2007) smoothed β.
They had a good reason for doing this - without smoothing the Lee-Carter can give
some embarrassing crossovers, as S12 shows. Smoothing β will fix this most of the
time and we would recommend that DDE always be used in preference to the original
1992 version. Not only are crossovers avoided (for the most part) but the forecasts
change smoothly from age to age (S12, panel 3).

S13. Stephen and I (2009) used penalty forecasting in the Lee-Carter model. This introduces
a new class of models. We’re very keen on widening model choice since model risk is
the ‘great unknown’; the only way to have some kind of handle on model risk is to have
a wide selection of models available. S14 compares the results from the DDE (time
series) and CR (penalty) models. Some other possibilities are given in S15 and S16.

2D P-spline models

S4. Notice that not only does the penalty bring about the smoothing but also enables the
forecasting to take place as a linear forecast of the final two coefficients (solid green
squares).

S5. Think of the two mountain range profiles in 1-d combining to give the full mountain
range in 2-d, as illustrated in S6.

S7. Cohorts run diagonally in an AP data matrix so we skew the matrix to make them run
vertically (S8). Then we can apply row (cohort) and column (age) penalties (S9).

S11. Notice that the two models (AP and AC) give different forecasts with different widths
for their CIs. Of course, we don’t know which is to be preferred. This is an example
of model risk.

Piggyback forecasts of mortality

Background Piggyback forecasting is a way of using limited company data to adjust a
forecast made from a large standard data set (CMI, ONS, etc). Any forecasting method can
be used on the large data set and crucially the company data can be subdivided by classes
of business. Slides 1-4 set the data scene.

S5. This slide shows we have a problem if we just go with the CMI forecast. Company
mortality (which has been averaged over the four classes of business) is clearly heavier
than the CMI. But the company data would appear to be insufficient to support a
stand-alone forecast. Piggyback forecasting is designed to address this problem and it
does this by adjusting the CMI forecast in a way not dissimilar to how standard table
adjustment works.

S7. Log(mortality) has been averaged over year and this averaging reveals a pattern which
can be seen over class of business.
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S8. This is the corresponding slide when log(mortality) is averaged over age. The miss-
ing points arise because there are some company data cells with no deaths and so
log(mortality) is not defined. These points have been omitted from the plot.

S9. Examination of S7 and S8 suggests these simple relationships. The key assumption is
the constant in time one since this will allow forecasting to take place.

S10. We fit the company data over the existing CMI forecast. We call this data trimming.

S11. The top half gives the model: it’s a linear adjustment by age of the existing forecast.
The bottom half gives the forecast.

S12. This slide shows that the model fits quite well. Notice that there is evidence of mortality
convergence at high ages, as we would expect.

S13. Again the model fits well and the key parallel assumption is clearly seen.

S14. The piggyback forecasts. The gaps between the CMI forecast and the company forecast
depend obviously on the class of business; the size of these gaps is also age dependent
(not shown).

The Time Series v Penalty Debate

Background The Projections Toolkit offers two broad classes of forecasting methods: time
series and penalty. Lee and Carter (1992) pioneered the time series approach; the penalty
method is more recent (Currie, Durban and Eilers, 2004). But which method is more ap-
propriate? Here is the argument as we see it.

S1. We have 1-dimensional data (age 70) over time (1950-2005). What do we expect to
see in 2006?

S2. In this slide if you were ask to predict a value for 2006 would you start at the trend
value or at last year’s value? It’s a simple question but quite fundamental.

S3. This gives the time series answer (using the simple random walk with drift model for
illustration).

S4. This slide reminds you how penalty forecasting works: linear extrapolation of the final
two coefficients (incidentally, this explains why you should not have your knots too
close together since this will make your forecast over-sensitive to the recent past).

S5. And this is how the penalty forecast works.
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Forecasting with Time Series: ARIMA and Drift Models

S1. Lee-Carter used the simple random walk with drift when they forecast future life
expectancy in the USA. This worked for the data they were using (US mortality data
up to 1989). The model is very simple: on average, κ̂n+1 = κ̂n + â. Thus next year
is the current year + a constant term (known as the drift). The actual observation is
κ̂n+1 = κ̂n + â + zn+1 where zn+1 ∼ N (0, σ2) is a random disturbance; σ2 measures the
volatility. Estimation is very simple and the result is shown in S2. Applied to CMI
data the result seems less than satisfactory. We need something more general.

S3. ARIMA or ARIMA(p, d, q) models are a very flexible family of time series models. The
acronym stands for AutoRegressive Integrated Moving Average process. The general
formula is

ARIMA(p, d, q) : φ(B)(1−B)dκt = θ(B)zt

where B is the backward-shift operator. We examine each term in turn.

(a) d is the order of differencing. For example, if d = 2 we have

(1−B)2kt = (1− 2B + B2)kt = kt − 2kt−1 + kt−2

(b) φ(B) is a polynomial in B of order p. For example, if p = 1 and φ(B) = 1− 0.2B
(as in S3), we have (assuming for simplicity that d = 0),

φ(B)(1−B)dkt = (1− 0.2B)kt = kt − 0.2kt−1

(c) θ(B) is a polynomial in B of order q. For example, if q = 1 and θ(B) = 1− 0.3B
(as in S3),

θ(B)zt = (1− 0.3B)zt = zt − 0.3zt−1

Slide S3 gives an example of how this all gets put together and shows how next year’s
observation depends on the previous years’ observations, the order of the differencing
and the previous years’ innovations.

S4. The Projections Toolkit gives automatic ARIMA model selection via minimizing AIC
(note: slide S4 shows −AIC so the best fitting model maximizes AIC). The Projections
Toolkit also allows you to over-ride the best fitting model with the help of the panel of
fits for κ.

S5. A comparison of the drift model and the best fitting ARIMA model. The central
ARIMA forecast looks much more realistic. The ARIMA model has many more pa-
rameters than the simple drift model; the ARIMA CI is much wider than that of the
drift model (which looks optimistically narrow to my eyes).
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Overdispersion and Outlier Handling

S2. shows the result for age 70 of fitting the 2d AP P-spline model to the ONS data with
ages 40-90 and years 1961-2007. The fit to the observed mortality looks fine but there
are some worrying features (the Projections Toolkit will alert you to these).

S3. The two main worries are (a) very small smoothing parameters and (b) some very
large standardized residuals. The large residuals are evidence of overdispersion. This
arises when there is more variation in the data than the underlying Poisson assumption
allows. This is common in population data when there is heterogeneity among those at
risk (death rates vary enormously over social class, for example). With insurance data
there is the additional problem of duplicate policies (although modern de-duplication
methods can help here).

S4. shows what happens when a penalty forecast is made when there is essentially no signal
in the year direction (very small λy).

S5. The Poisson model is the backbone of mortality work (Brouhns, et al., 2002) but
it assumes a homogeneous risk set. The quasi-Poisson model allows for additional
variation. Overdispersion is measured by the overdispersion parameter, Ψ2. This
generalizes the Poisson model since if Ψ2 = 1 the quasi-Poisson model reduces to
the Poisson model.

S6. With ONS data we have Ψ2 = 4.47: strong evidence of extensive overdispersion (the
CMI data is more homogeneous than the ONS data so we would expect a smaller value
of Ψ2 and indeed we find Ψ2 = 1.82). Notice we have fixed our two problems: we
have much larger smoothing parameters and much smaller residuals. S7 is much more
satisfactory.

S8. shows the forecast for the CMI data. With a much smaller value of Ψ2 than for the
ONS data the original Poisson model gives satisfactory results. The central forecasts
are almost identical but there is a bonus with overdispersion: the CIs are narrower (a
stiffer fit gives a more secure forecast and hence narrower CIs).

S9. Large residuals can arise in various ways: overdispersion, poorly fitting model and
rogue (outlier) data points. Fitting an overdispersion parameter should fix the first
problem but the other two can remain. The Lee-Carter model can fit population data
poorly by the usual “hypothesis testing” criteria but this does not mean that the
forecasts are not useful. What of rogue data points? These can arise because of some
unusual event: Spanish flu, a very cold winter. The effect of such anomalous points
is to reduce the size of the smoothing parameters with the effect that forecasts are
more volatile and CIs wider. Removal of such points will stabilize the forecasts. The
Projections Toolkit allows automatic deletion of data points with large residuals. This
facility should be used sparingly since a large number of very large residuals might
indicate problems with model fit.
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