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Abstract

This article gives an overview of survival models and their advantages for actuar-
ial work, specifically for modelling mortality and longevity risk. Data collected and
analysed by actuaries is particularly suitable for survival modelling — payment sys-
tems and policy-administration systems contain detailed individual data, and most
portfolios are essentially a longitudinal study with continuous recruitment. The role
of financial liability means that data is usually updated on at least as timely a basis
as the statistics collected for medical trials, where survival models are routinely used.
Survival models make the best use of available data, without the loss of information
inherent in qx models. By modelling at the level of the individual, the thorny actuarial
problem of duplicates can be addressed at source, and not in the model itself. Fur-
thermore, survival models can more easily cope with the challenges of competing risks
than qx models.
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1 Introduction

This article was written at the request of the CMI, although it is not a CMI note and the
information and opinions contained here are those of the author alone. The note outlines
basic features of survival models, and why they are particularly useful for actuarial work.
Since the subject of survival models is of wider interest to actuaries, an electronic copy of
the article is freely available at www.longevitas.co.uk/site/informationmatrix/. References
are given at the end of this article, while readers of the electronic version will find direct
hotlinks to relevant background material on the Internet.

It is not the purpose of this note to document the various modelling methodologies used
by the CMI, either past or present. However, we note in passing that the CMI has modelled
the force of mortality, µx, for over three decades now, beginning with the graduation of the
80 series mortality tables1.

Before proceeding to more detailed discussion of survival models, it is worth highlighting
to actuaries that survival models are neither obscure, new or untested. Early work on
estimating the survival function was done over six decades ago by Kaplan and Meier (1958)[6],
a paper which ranks as one of the most commonly cited in scientific literature. Similarly, Cox
(1972)[2] introduced the idea of the proportional hazards model, which is the cornerstone of
parametric survival modelling. Survival models are widely used in modern medical statistics
and experimental trials — see Collett (2003)[1]. The use of survival models is therefore
widespread and uncontroversial.

The author has been studying and applying survival models to actuarial problems since
2006. This article covers the basic concepts of survival models, but it also highlights the
specific features which make them relevant to actuaries.

2 Basic terminology and concepts

A survival model seeks to describe tpx, i.e. the probability of survival from age x to age x+t.
This is described by non-actuaries as the survivor function, and is more usually denoted as
Sx(t), i.e. the probability of surviving t years from age x at outset.

Define hqx as the probability that a life aged x dies before age x+h. The force of mortality
is therefore defined as:

µx = lim
h→0+

hqx
h

(1)

A model for the continuous survival curve is directly equivalent to a model for the force of
mortality, µx, due to the standard identity:

tpx = Sx(t) = exp

(
−
∫ t

0

µx+sds

)
(2)

1Source: A. D. Wilkie, personal communication.
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where the integral Hx(t) =
∫ t
0
µx+sds is known to statisticians as the integrated hazard

function2.
An important feature of survival models is that they model mortality at the level of the

individual, not of the group. An individual i enters observation at age xi, and is observed
for time ti. An indicator variable, di, shows whether the event of interest has occurred at
age xi + ti or not: di = 1 for death and di = 0 for survival in the case of a mortality
investigation, but di could be an indicator for a critical-illness claim, a policy lapse or any
other demographic risk of interest.

The annual rate of mortality, qx, can be exactly calculated from the force of mortality as
follows:

qx = 1− exp

(
−
∫ 1

0

µx+s

)
ds (3)

The converse does not hold true, however, as the force of mortality, µx, can only be ap-
proximated from the annual rate of mortality, qx. A common simple approximation is as
follows:

µx+ 1
2

= − loge (1− qx) (4)

where loge denotes a logarithm to base e.

3 Censoring

A defining feature of survival models is the concept of censoring, i.e. where incomplete
information is available. Censoring is one of the reasons why survival analysis has to be
approached differently from other statistical inference.

Censoring is where an individual is unobserved for a period of time. The most common
kind of censoring in survival-model work is right censoring, i.e. where not everybody in a
mortality study is dead at the point of analysis (di = 0). Another type of censoring is where
an individual is known to have died before a particular date, but not precisely when. A third
form of censoring is interval censoring. This is where the event is known to have occurred
between two times, t1 and t2, but where precise knowledge of when the event occurred is
unavailable. An example in a medical study would be where a participant last attended a
consultation date at time t1, but who did not attend a subsequent consultation at time t2
and it was subsequently established that the participant had died. The observation for that
participant would be interval-censored between t1 and t2. Interval censoring involves a loss
of information, and also occurs when modelling qx instead of µx, a subject we will return to
in the next section.

A related but quite different phenomenon is truncation. Most data which actuaries
encounter is left-truncated, because members of pension schemes and holders of insurance

2As might be inferred from the name of Hx(t), statisticians refer to the force of mortality as the hazard
rate. Engineers have a similar concept, which they call the failure rate.
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Figure 1: Diagram of survival-model setup. The time observed, ti, is shown in grey, while
deaths are marked with a cross, ×. Since people do not usually enter into life-insurance
contracts at birth, observations are left-truncated, i.e. lives start being observed at age
xi > 0. The upper case is an example of right-censored data as death happens after the end
of the observation period. Figure reproduced from Richards (2008)[9].
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contracts typically only enter a portfolio at an adult age3. The distinction can be explained
as follows:

• A left-censored observation is where death is known to have occurred prior to a par-
ticular date, but the date is not known exactly.

• A left-truncated observation is where the exposure prior to the entry age cannot be
used.

Left-truncation is a particular practical challenge for survival models, and in many soft-
ware implementations only a handful of models can cope with left-truncation. The ability
to deal with left-truncation is critical for actuarial work, and Richards (2008, 2010)[9][10]
tabulates the integrated hazard functions for left-truncated models.

4 Assumptions

For a given individual i, the information pair {ti, di} is assumed to be independent of all
other information pairs in the data set. An important difference in actuarial applications
of survival models compared to elsewhere is the problem of duplicates. Actuaries usually
deal with data which is held at the level of the insurance policy or benefit record, and
individuals can and do have multiple policies, as shown in Figure 2. It is therefore important

3Children’s pensions do exist in pension schemes, but the point still stands — actuaries do not tend to
deal with data on people from birth onwards.
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to identify individuals with more than one record, a process known as deduplication. Richards
(2008)[9] outlines an approach to deduplicating policy-orientated data without requiring a
single unique identifier for individuals.

Figure 2: Average number of policies per person in each of equal-sized membership bands
ordered by total annual annuity income. Band 1 is the 5% of lives with smallest annual
pensions, through to band 20 which is the 5% of lives with the largest annual pensions.
Figure reproduced from Richards and Currie (2009)[11].
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The ability to deduplicate prior to building any models is a key advantage of survival
models — it addresses the problem of duplicates at source. In contrast, historical actuarial
analyses dealt with counts which included duplicates, and much effort had to be devoted
to restructuring models to cope with the resulting over-dispersion in the counts data — see
Daw (1951)[3] and many other actuarial papers on this topic. The duplicate problem is
critical when the tendency to have duplicate records is itself correlated with one or more of
the risk factors under investigation — Figure 2 shows that the tendency to have duplicate
policies is strongly correlated with income, which itself is a risk factor of considerable interest
in actuarial work. Not only is it better to deal with the duplicate problem at source, it is
in fact more effective to do so. Allowing for duplicates in count data usually involves the
simplifying assumption that duplicates are randomly distributed with respect to risk factors,
whereas Figure 2 shows that this is not the case.
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For a given individual i, the survival time ti is not independent of the status indicator
di. It is important that ti is independent of any mechanism which causes the survival time
to be censored (i.e. di = 0). Censoring when ti depends on the censoring mechanism is
called informative censoring and it invalidates the basic criteria for any survival model. This
sort of censoring can occur in drug trials, e.g. if treatment were withdrawn from a study
participant due to a deterioration in his or her health. However, informative censoring is
uncommon in actuarial work.

5 Survival models versus Binomial count models

A survival model is concerned with the future lifetime, Tx, of an individual aged x. Tx is a
random variable, and if we are modelling µx then Tx is a continuous random variable.

In contrast, other statistical models are concerned with counts, often of grouped data.
For example, consider the number of deaths in one year amongst a group of Ex identical lives
aged x, Dx. Dx can be modelled as a random counting variable with Binomial distribution,
i.e. Dx ∼ B(Ex, qx), where inference for qx follows from the observed number of deaths dx.

This distinction — modelling survival time instead of modelling counts — introduces one
of the advantages of survival models over qx models, namely fuller use of available data. By
modelling counts of events with qx, we lose information as to when the events actually took
place. To illustrate this loss of information, consider the following example from Richards
(2008)[9]. Two groups, A and B, each consist of four identical lives alive at the start of
the year. During the course of the year one life dies in each group, making the estimated
mortality rate, q̂A = q̂B = 1

4
in both cases. However, if the death in group A occurs at the

end of January, the estimated force of mortality is µ̂A = 1
3 1
12

= 12
37

. If the death in group

B occurs at the start of December the estimated force of mortality is µ̂B = 1
3 11
12

= 12
47

. As

this simple example shows, working with the force of mortality means we can use all the
information available. In contrast, working with q-type rates loses information on time of
death and is therefore less sophisticated.

This greater efficiency of models for µx confers a benefit over qx models in all scenar-
ios, although the benefit will be modest in most cases when a data set is very large. An
exception is likely to be where the modelled intensities are very high, where most of the
useful information will be contained in the times of events. A simple example would be a
care-annuity portfolio, where life expectancy might be of the order of around three years.
Where the expected time to an event is relatively short, the information loss in using qx
could be considerable.

6 Survival models versus Poisson count models

We note that a model for µx is not synonymous with a survival model — we could also
have a Poisson model for Dx based on the central exposure, Ec

x, i.e. Dx ∼ Poisson(Ec
xµx).

There are several results linking Poisson count models to survival models. Indeed, some of
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the so-called accelerated failure-time survival models are fitted using the GLM algorithm for
Poisson counts after a suitable data transformation.

It is sometimes the case that data is sometimes only available in an aggregated form4.
Under such circumstances a survival model for individuals is out of the question and a count-
based model is the only possible solution. When the data dictate a counts-based model, it
is usually preferably to use a Poisson model, rather than a Binomial model.

7 The Kaplan-Meier estimator of the survival function

An important tool in survival analysis is the estimator of the survival function introduced
by Kaplan and Meier (1958)5. The main features of this are as follows:

• It is a non-parametric model — the Kaplan-Meier estimator of the survival curve
requires no parameters to be estimated.

• It is based around q-type rates, but where the interval over which q applies varies
along the curve and is determined by the actual data ex post, rather than by the
analyst building the model.

• As a non-parametric method it can only model the mortality of sub-groups by strati-
fying the data and building separate curves.

• Although the Kaplan-Meier survival function is non-parametric, it is still a statistical
estimator of the survival function and so confidence intervals can be derived.

One wrinkle for actuaries is that the standard Kaplan-Meier estimator is typically defined
with reference to the time since a medical study commenced. In actuarial work it makes more
sense to define the Kaplan-Meier estimator with respect to age. The following definition from
Richards (2010)[10] will work for any portfolio whether it is closed or open to new business:

tjpx =

j≤n∏
i=1

(
1− dx+ti

lx+t−i

)
(5)

where x is the outset age for the survival curve, {x+ ti} is the set of n distinct ages at death,
lx+t−i is the number of lives alive immediately before age x + ti and dx+ti is the number of
deaths occurring at age x+ ti. Implicit in Equation 5 is that the data are ordered by death
ages, and that such an approach is only possible with individual-level data, not aggregated
data. An example of the Kaplan-Meier estimator is given in Figure 3. The form of Equation
5 explains the alternative description of the Kaplan-Meier estimator as the product-limit
estimator of the survival function.

4Aggregated data is referred to by the CMI as “scheduled data”.
5A related estimator is due to Fleming and Harrintgon (1991)[4], which produces a survivor function

higher than the Kaplan-Meier estimator. The difference between the two estimators is negligible for the size
of data sets actuaries typically work with. Note that what Collett (2003)[1] on pages 20–22 refers to as the
Nelson-Aalen[8] estimator for the survivor function is in fact the Fleming-Harrington estimator.
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Figure 3: Kaplan-Meier survival curves as per Equation 5. Figure reproduced from Richards
(2010)[10].
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Note that Kaplan-Meier estimator conceptually straddles the concepts of qx and µx. The
definition in Equation 5 is clearly based around qx, but where the discretization is decided
by the data a posteriori, rather than by the analyst a priori. As the number of events in life-
office portfolios is typically rather large, the discretisation steps can be quite small and the
results quickly look like µx due to the relationship in Equation 1. For example, the median
age gap for the male lives in Figure 3 is one day, which is the smallest interval possible when
using dates to measure survival times (the largest gap is 11 days). For this reason a purist
might argue that models fitted in practice are actually for qx with a daily interval, i.e. 1

365
qx,

rather than for µx.
A major limitation of the Kaplan-Meier estimator is that it can only model the mortality

of sub-groups by stratification, i.e. a separate model for each sub-group. If we have a number
of risk factors which we expect to operate independently — say gender, smoker status and
distribution channel — then with Kaplan-Meier we have to sub-divide the data into as many
sub-groups as there are combinations of risk factors. This quickly becomes a problem for
even very large data sets, as some combinations will be much rarer than others. This leads
us to discussion of parametric survival models.
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8 Parametric survival models — proportional hazards

For actuarial purposes, a far more useful class of survival models is parametric models, i.e.
models with one or more parameters to be estimated from data. Such models avoid the
stratification problem of the Kaplan-Meier model, and allow a single overarching model to
be fitted to the entire data set.

Cox (1972)[2] introduced the idea of a proportional-hazards model, where the mortality
of an individual i is a proportion eαi of the baseline hazard, µ0(x):

µi(x) = eαiµ0(x) (6)

At its simplest, the values of αi might take one of only two values: αi = 0 if individual
i belonged to the baseline group, and αi = amale if the individual belonged to a different
group. An example would be a mortality model where females were the baseline (αi = 0
for females) and males had mortality which was a constant proportion of the female hazard
(αi = amale for males). The parameter a would be estimated, and would be the effect of being
male on mortality. The interesting thing about the Cox model is that it does not require
the estimation of the baseline hazard function, µ0(x), and so lends itself to answering the
question of whether one group has significantly different mortality from another. It is for
this reason that the Cox model is widely used in medical research, since much drug testing
is concerned with whether the treatment group has higher survival rates than the control
group, and the analyst is not so concerned with the precise shape of the basic hazard function.
The Cox model can be expanded to include any number of covariates, however, simply by
constructing an individual’s αi from any number of j risk factors, aj:

αi =
∑
j

zi,jaj (7)

where zi,j is an indicator variable taking the value 1 when an individual possesses the risk
factor and the value 0 when the individual does not. An example would be where not just
the effect of being male was to be measured (amale) but an analyst also wanted to control
for smoker status (asmoker). Now the baseline group is non-smoking females, and although
there are four combinations, only two parameters need to be estimated: one for the effect of
being male and one for the effect of smoking. Here we see the power of parametric survival
models over the likes of the Kaplan-Meier estimator, as stratification is not required and all
data can be used in a single model. In the case of this author — a non-smoking male —
in addition to the survival time, t, and status indicator, d, the additional data would be as
follows:

zmale = 1 (8)

zsmoker = 0 (9)

The author’s wife is a non-smoking female, so the additional data for her in a Cox model
would be:
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zmale = 0 (10)

zsmoker = 0 (11)

Where all the zi,j values are zero, then that individual belongs to the baseline group. It does
not matter which group is treated as the baseline. The advantage of the approach outlined in
Equations 6–10 is that it can be generalised to an unlimited number of risk factors, with no
reduction in power due to stratification. However, the disadvantage of the pure Cox model
of Equation 6 is that actuaries are very concerned indeed with the shape of the baseline
hazard function, µ0(x). Medical trials and research might just be concerned with whether
risk factors exist and are significant, but in actuarial work the precise shape of the survival
curve and the timing of mortality is critical.

9 Parametric survival models — age-varying hazards

It is relatively straightforward to extend survival models to include simultaneous estimation
of the baseline hazard. A simple example would be the Gompertz (1825)[5] law for the force
of mortality:

µi(x) = eαi+βix (12)

where αi is constructed identically to Equation 7 to account for main effects which raise or
lower the mortality curve. βi is constructed similarly, and allowed for age-varying rates of
mortality where the slope can also depend on the risk factors being modelled. The Gompertz
model is just one of many possible alternatives, and there is a wide choice of shapes for the
basic hazard function. However, estimation of the parameters in such models is trickier due
to the left-truncation which accompanies almost every actuarial data set. Richards (2010)[10]
details sixteen of the most commonly available parametric survival models, and compares
their suitability for modelling the mortality of pensioners and annuitants. Formulae are
given for both the force of mortality and the integrated hazard function for truncated data.

10 Competing risks and multiple-state models

So far we have implicitly considered modelling a single decrement whose occurrence ends the
risk, e.g. a pension or annuity contract. This is a model with two-states — alive and dead
— and there is no return to the first state once the event of interest has occurred. In terms
of Markov models, this would be described as a “two-state model without return”, and is
depicted in Figure 4.
A major area of benefit from modelling µx in a survival model comes from the analysis
of competing decrements, as illustrated in Figure 5. It is just as simple to use a survival
model for µx in the case of Figure 5 as for Figure 4, although a qx model would be much

10



Figure 4: Two-state model without return, e.g. longevity risk within a pensioner or annuitant
population.

Alivestart Dead
µx

trickier and would require further artificial — and often unrealistic — assumptions regarding
the distribution of competing events over the year and the independence of the risks. The
complexities of qx models increase as the number of competing risks increases.

Figure 5: Three-state model without return, e.g. longevity risk within a pensioner or an-
nuitant population but where some beneficiaries can commute pensions on the grounds of
triviality. Note that it is logically possible to move from the Commuted state to Dead.
However, such transitions will not be observed after commutation, so this transition cannot
be modelled and is therefore not shown.

Alivestart Dead

Commuted

µx

τx

However, the advantages of survival models — and in modelling in continuous time —
become overwhelming when we consider risk models where a life may return to a previous
state. This is depicted in Figure 6, which illustrates the risks for a whole-of-life insurance
policy. However, there are other cases with more states and more possible transitions. The
interested reader is directed to Macdonald (1996)[7] for a more detailed treatment.

11



Figure 6: Four-state model with return, e.g. a whole-of-life assurance policy

Alivestart

Dead

Surrendered

Paid-up

µ1
x

τx

πx

µ2
x

ρx

λx

11 Conclusions

Survival models lend themselves particularly well to actuarial work. Payment systems and
policy-administration systems contain detailed individual data, and most portfolios are es-
sentially a longitudinal study with continuous recruitment. The role of financial liability
means that data are usually updated and maintained on at least as timely a basis as the
statistics collected for medical trials, where survival models are heavily used.

Survival models make the best use of available data, without the loss of information
inherent in qx models. By modelling at the level of the individual, the problem of duplicates
can be addressed at source, and not in the model itself. Furthermore, survival models can
more easily cope with the challenges of competing risks than qx models.

Further mini-articles on aspects of survival models in actuarial work can be found on the
author’s blog at http://www.longevitas.co.uk/site/informationmatrix/.
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