55 Old Broad Street, London

The APCI model — a stochastic implementation

Stephen Richards 30th June 2017

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

www.longevitas.co.uk

- 1. Background
- 2. APCI model
- 3. Fitting and constraints
- 4. Parameter estimates
- 5. Smoothing
- 6. Value-at-Risk (VaR)
- 7. Constraints (again)
- 8. Conclusions

www.longevitas.co.uk

1 Background

- CMI released new projection spreadsheet.
- Calibration is done by new APCI model.
- See Continuous Mortality Investigation (2017).

- CMI intended APCI model for calibrating spreadsheet.
- Richards et al. (2017) implement it as a fully stochastic model...
 - \dots to be presented at sessional meeting in 2018.

1 Background

A STOCHASTIC IMPLEMENTATION OF THE APCI MODEL FOR MORTALITY PROJECTIONS

By S. J. Richards, I. D. Currie, T. Kleinow and G. P. Ritchie

2 APCI model

$$\log m_{x,y} = \alpha_x + \beta_x (y - \bar{y}) + \kappa_y + \gamma_{y-x} \tag{1}$$

Age-Period :
$$\alpha_x + \kappa_y$$
 (2)
APC : $\alpha_x + \kappa_y + \gamma_{y-x}$ (3)
Lee-Carter : $\alpha_x + \beta_x \kappa_y$ (4)
APCI : $\alpha_x + \beta_x (y - \bar{y}) + \kappa_y + \gamma_{y-x}$ (5)

Age-Period: $\alpha_x + \kappa_y$

APCI model can be viewed as either:

- An APC model with added Lee-Carter-like β_x term, or
- A Lee-Carter-like model with added γ_{y-x} cohort term.

BUT, κ_y in APCI model is very different, as we will see.

3 Fitting and constraints

- All of these models require *identifiability constraints*.
- Identifiability constraints do not change $\log \hat{\mu}_{x,y}$.

$$AP: \sum \kappa_y = 0$$
(6)

$$LC: \sum \kappa_y = 0, \sum \beta_x = 1$$
(7)

$$APC: \sum \kappa_y = 0, \sum \gamma_c = 0, \sum (c - c_{\min} + 1)\gamma_c = 0$$
(8)

APCI model requires five identifiability constraints:

$$\sum \kappa_y = 0 \tag{9}$$

$$\sum (y - y_1)\kappa_y = 0 \tag{10}$$

$$\sum \gamma_c = 0 \tag{11}$$

$$\sum (c - c_{\min} + 1)\gamma_c = 0 \tag{12}$$

$$\sum (c - c_{\min} + 1)^2 \gamma_c = 0$$
 (13)

- APCI model requires more constraints than other models.
- Constraints impact the parameter estimates in important ways.

- Continuous Mortality Investigation (2017) uses (for example) $\sum \gamma_c = 0.$
 - \Rightarrow Cohort with one observation gets same weight as cohort with thirty observations?

- Cairns et al. (2009) weights according to number of observations, i.e. $\sum w_c \gamma_c = 0$.
- Cairns et al. (2009) approach preferable, so used from now on.
- See also Richards et al. (2017, Appendix C).

The Age-Period, APC and APCI models:

- are linear,
- require identifiability constraints, and
- have parameters that can be smoothed.

- Assume $D_{x,y} \sim \text{Poisson}(E_{x,y}\mu_{x,y})$.
- AP, APC and APCI models are penalized, smoothed GLMs.

Algorithm from Currie (2013) is integrated GLM-fitting process to:

- maximise likelihood,
- apply identifiability constraints, and
- smooth parameters.

4 Parameter estimates

 $4 \alpha_x$

Parameter estimates $\hat{\alpha}_x$ for four unsmoothed models.

www.longevitas.co.uk

 $\Rightarrow \alpha_x \text{ plays the same role across all four models,}$ i.e. average log mortality by age. $...as long as <math>\sum_y \kappa_y = 0.$ $4 \beta_x$

Parameter estimates $\hat{\beta}_x$ for Lee-Carter and APCI models (both unsmoothed).

 $4 \beta_x$

Parameter estimates $\hat{\beta}_x$ for Lee-Carter and $-\hat{\beta}_x$ for APCI models (both unsmoothed).

$\Rightarrow \beta_x$ plays an analogous role in the Lee-Carter and APCI models, namely an age-related modulation of the time index.

But the APCI model has *two* time indexes:

- 1. A modulated central linear trend, $(y \bar{y})$, and
- 2. An unmodulated non-linear term, κ_y .

α_x and β_x play similar roles across all models.
What about κ_y and γ_{y-x}?

LONGEVITAS

Parameter estimates $\hat{\kappa}_{y}$ for four unsmoothed models.

Age-Period $\hat{\kappa}_y$

 κ_u

- κ_y plays a similar role in the Age-Period, APC and Lee-Carter models.
- κ_y plays very different role in the APCI model.
- APCI $\hat{\kappa}_y$ values have less of a clear trend pattern for forecasting.
- APCI $\hat{\kappa}_y$ values are strongly influenced by structural decisions made elsewhere in the model.

Parameter estimates $\hat{\gamma}_{y-x}$ for APC and APCI models (both unsmoothed).

 γ_{u-x}

- The γ_{y-x} values play analogous roles in the APC and APCI models...
 - ... yet the values taken and the shapes displayed are very different.
- If values and shapes are so different, what do APCI γ_{y-x} values represent?
 - ... and what do these values mean when put into the CMI spreadsheet?

5 Smoothing

5 To smooth or not to smooth? Tongevitas

- Continuous Mortality Investigation (2017) smoothes all parameters.
- However, only α_x and β_x exhibit regular behaviour.
- Does it make sense to smooth κ_y and γ_{y-x} ?

5 To smooth or not to smooth? Tongevitas

- CMI's smoothing parameter for κ_y is S_{κ} .
- Value is set subjectively.
- What is the impact of smoothing κ_y ?

life expectancies are [...] very sensitive to the choice made for S_{κ} , with the impact varying across the age range. At ages above 45, changing S_{κ} by 1 has a greater impact than changing the long-term rate by 0.5%."

Continuous Mortality Investigation (2016, page 42)

See also https://www.longevitas.co.uk/site/informationmatrix/signalornoise.html

- S_{κ} has a large impact because κ_y collects features left over from other parts of the model structure.
- Indeed, κ_y collects every non-period effect and applies it without any age modulation.
- If κ_y is a "left-over", should one smooth it at all?

"Whereas a catastrophe can occur in an instant, longevity risk takes decades to unfold"

The Economist (2012)

Solution from Richards et al. (2014):

- Simulate next year's experience.
- Refit the model.
- Value liabilities
- Repeat...

Approach from Kleinow and Richards (2016) for parameter uncertainty:

- ARIMA model with mean for κ_y .
- ARIMA model without mean for γ_{y-x} .

www.longevitas.co.uk

Pongevitas

Value-at-risk capital requirements for annuities payable to male 70-year-olds. Source: Richards et al. (2017, Table 4).

- Variety of density shapes.
 ⇒ not all unimodal.
- Considerable variability between models.
 ⇒ need to use multiple models.

Pongevitas

VaR99.5% capital-requirement percentages by age for four models. Source: Richards et al. (2017).

Q. Why do capital requirements reduce with age for Lee-Carter, but not with APCI? A. κ_y is unmodulated by age in APCI model.

7 Constraints (again)

Number of observations for each cohort in the data region.

- Both Continuous Mortality Investigation (2017) and Richards et al. (2017) avoid estimating "corner cohorts".
- This means not all constraints are required for identifiability.
- Continuous Mortality Investigation (2017) and Richards et al. (2017) both fit over-constrained APCI models.
- What impact does this have?

• Over-constrained models reduce the goodness-of-fit...

... but can be used to impose desirable behaviour on parameters.

- $\hat{\kappa}_y$ robust to over-constrained model.
- Values for $\hat{\gamma}_{y-x}$ differ, but shape similar.

7 APCI model **LONGEVITAS** - γ_{y-x} Parameter estimates $\hat{\gamma}_{y-x}$ APCI(S) model $\hat{\gamma}_{y-x}$ (over-constrained) $\hat{\gamma}_{y-x}$ (minimal constraints) 0.40.80.60.20.40.20 0 1900 1900 1950 1950 Year of birth Year of birth

- Neither $\hat{\kappa}_y$ nor $\hat{\gamma}_{y-x}$ robust to over-constrained model.
- κ_y in APCI model is a term which picks up left-over aspects of fit.
- $\hat{\gamma}_{y-x}$ changes radically depending on constraint choices.

 \Rightarrow What are the implications for the CMI model of using $\hat{\gamma}_{y-x}$ from APCI model?

8 Conclusions

- APCI model is interesting addition to model pantheon.
- APCI model shares features with APC and Lee-Carter models.
- Smoothing $\hat{\alpha}_x$ and $\hat{\beta}_x$ seems sensible.
- Smoothing $\hat{\kappa}_y$ and $\hat{\gamma}_{y-x}$ is not sensible.
- APCI $\hat{\kappa}_y$ and $\hat{\gamma}_{y-x}$ sensitive to constraint choices.

- Cairns, A. J. G., D. Blake, K. Dowd, G. D. Coughlan,
 D. Epstein, A. Ong, and I. Balevich (2009). A
 quantitative comparison of stochastic mortality
 models using data from England and Wales and the
 United States. North American Actuarial
 Journal 13(1), 1–35.
- Continuous Mortality Investigation (2016). CMI Mortality Projections Model consultation — technical paper. Working Paper 91.
- Continuous Mortality Investigation (2017). CMI Mortality Projections Model: Methods. Working Paper 98.

- Currie, I. D. (2013). Smoothing constrained generalized linear models with an application to the Lee-Carter model. *Statistical Modelling* 13(1), 69–93.
- Kleinow, T. and S. J. Richards (2016). Parameter risk in time-series mortality forecasts. *Scandinavian Actuarial Journal 2016(10)*, 1–25.
- Richards, S. J., I. D. Currie, T. Kleinow, and G. P. Ritchie (2017). A stochastic implementation of the APCI model for mortality projections.
- Richards, S. J., I. D. Currie, and G. P. Ritchie (2014). A value-at-risk framework for longevity trend risk. British Actuarial Journal 19 (1), 116–167.

The Economist (2012). The ferment of finance. Special report on financial innovation February 25th 2012, 8.

More on longevity risk at www.longevitas.co.uk