A technical note on constraints and invariance in generalized linear models

Iain D Currie

Heriot-Watt University Copyright: Iain D Currie ©

To keep things simple we will deal with the standard linear model with normal errors; the results apply equally to the case of a generalized linear model.

We start with the definition of the null space of a matrix \boldsymbol{M}.
Definition: The null space of the matrix \boldsymbol{M} is the set

$$
\begin{equation*}
\mathcal{N}(\boldsymbol{M})=\{\boldsymbol{v}: \boldsymbol{M} \boldsymbol{v}=\mathbf{0}\} . \tag{1}
\end{equation*}
$$

Lemma 1: $\mathcal{N}\left(\boldsymbol{M}^{\prime} \boldsymbol{M}\right)=\mathcal{N}(\boldsymbol{M})$.
Proof: Let $\boldsymbol{v} \in \mathcal{N}\left(\boldsymbol{M}^{\prime} \boldsymbol{M}\right)$. Then

$$
\begin{equation*}
\boldsymbol{M}^{\prime} \boldsymbol{M} \boldsymbol{v}=\mathbf{0} \Rightarrow \boldsymbol{v}^{\prime} \boldsymbol{M}^{\prime} \boldsymbol{M} \boldsymbol{v}=0 \Rightarrow \boldsymbol{M} \boldsymbol{v}=\mathbf{0} \Rightarrow \boldsymbol{v} \in \mathcal{N}(\boldsymbol{M}) \tag{2}
\end{equation*}
$$

Conversely, let $\boldsymbol{v} \in \mathcal{N}(\boldsymbol{M})$. Then

$$
\begin{equation*}
\boldsymbol{M} \boldsymbol{v}=\mathbf{0} \Rightarrow \boldsymbol{M}^{\prime} \boldsymbol{M} \boldsymbol{v}=\mathbf{0} \Rightarrow \boldsymbol{v} \in \mathcal{N}\left(\boldsymbol{M}^{\prime} \boldsymbol{M}\right) . \tag{3}
\end{equation*}
$$

Hence $\mathcal{N}\left(\boldsymbol{M}^{\prime} \boldsymbol{M}\right)=\mathcal{N}(\boldsymbol{M})$.
We consider the standard regression model with model matrix \boldsymbol{X}

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\theta}+\boldsymbol{\epsilon}, \quad \boldsymbol{X} \text { is } n \times p, n>p, \operatorname{rank}(\boldsymbol{X})=p-q, q \geq 1 . \tag{4}
\end{equation*}
$$

An estimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$ satisfies the normal equations

$$
\begin{equation*}
\boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\theta}}=\boldsymbol{X}^{\prime} \boldsymbol{y} \tag{5}
\end{equation*}
$$

We now prove the basic invariance lemma which says that the fitted values in a linear model are invariants, in the following sense.
Lemma 2 (Invariance): Let $\hat{\boldsymbol{\theta}}_{1}$ and $\hat{\boldsymbol{\theta}}_{2}$ be any two solutions of the normal equations. Then

$$
\begin{equation*}
\boldsymbol{X} \hat{\boldsymbol{\theta}}_{1}=\boldsymbol{X} \hat{\boldsymbol{\theta}}_{2} \tag{6}
\end{equation*}
$$

Proof: Since $\hat{\boldsymbol{\theta}}_{1}$ and $\hat{\boldsymbol{\theta}}_{2}$ satisfy the normal equations (5)

$$
\begin{array}{ccc}
& \boldsymbol{X}^{\prime} \boldsymbol{X}\left(\hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2}\right)=\boldsymbol{X}^{\prime} \boldsymbol{y}-\boldsymbol{X}^{\prime} \boldsymbol{y}=\mathbf{0} \\
\Rightarrow & \hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2} \in \mathcal{N}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)=\mathcal{N}(\boldsymbol{X}) \quad \text { by Lemma } 1 \\
\Rightarrow & \boldsymbol{X} \hat{\boldsymbol{\theta}}_{1}=\boldsymbol{X} \hat{\boldsymbol{\theta}}_{2}
\end{array}
$$

and we are done.
We illustrate the use of this result by looking at the AP-model and the CBD model with cohort effects (M6).

Example 1 The age-period model.
The model matrix \boldsymbol{X} for the AP-model is

$$
\begin{equation*}
\boldsymbol{X}=\left[\boldsymbol{X}_{x}: \boldsymbol{X}_{y}\right]=\left[\mathbf{1}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}: \boldsymbol{I}_{n_{y}} \otimes \mathbf{1}_{n_{x}}\right], n_{x} n_{y} \times\left(n_{x}+n_{y}\right) \tag{7}
\end{equation*}
$$

with rank $n_{x}+n_{y}-1$. Hence the rank of $\mathcal{N}(\boldsymbol{X})$ is one. Let

$$
\begin{equation*}
\boldsymbol{n}=\binom{\mathbf{1}_{n_{x}}}{-\mathbf{1}_{n_{y}}} \tag{8}
\end{equation*}
$$

then it is easy to check that $\boldsymbol{X} \boldsymbol{n}=\mathbf{0}$ and so \boldsymbol{n} spans $\mathcal{N}(\boldsymbol{X})$. Let $\hat{\boldsymbol{\theta}}_{1}$ and $\hat{\boldsymbol{\theta}}_{2}$ be two solutions of the normal equations for the AP-model. Then $\hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2} \in \mathcal{N}(\boldsymbol{X})$ and so

$$
\begin{aligned}
& \hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2}=k\binom{\mathbf{1}_{n_{x}}}{-\mathbf{1}_{n_{y}}} \text { for some } k \\
& \Rightarrow \quad \hat{\boldsymbol{\alpha}}_{1}-\hat{\boldsymbol{\alpha}}_{2}=k \mathbf{1}_{n_{x}}, \quad \hat{\boldsymbol{\kappa}}_{1}-\hat{\boldsymbol{\kappa}}_{2}=-k \mathbf{1}_{n_{y}} .
\end{aligned}
$$

The relationships between other coefficients in other models can be found in the same way, i.e. find a basis for the null space of the model matrix.

Example 2 The CBD model with added cohort effects (M6).
The model matrix \boldsymbol{X} for this model is

$$
\begin{equation*}
\boldsymbol{X}=\left[\boldsymbol{X}_{x}: \boldsymbol{X}_{y}: \boldsymbol{X}_{c}\right]=\left[\boldsymbol{I}_{n_{y}} \otimes \mathbf{1}_{n_{x}}: \boldsymbol{I}_{n_{y}} \otimes\left(\boldsymbol{x}-\bar{x} \mathbf{1}_{n_{x}}\right): \boldsymbol{X}_{c}\right], n_{x} n_{y} \times\left(n_{x}+3 n_{y}-1\right) \tag{9}
\end{equation*}
$$

where $\boldsymbol{x}=\left(1, \ldots, n_{x}\right)^{\prime}$ and \boldsymbol{X}_{c} is that portion of the model matrix which corresponds to the cohort effects. The rank of \boldsymbol{X} is $n_{x}+3 n_{y}-3$ and so the rank of $\mathcal{N}(\boldsymbol{X})$ is two. Let

$$
\boldsymbol{n}_{1}=\left(\begin{array}{c}
\mathbf{1}_{n_{y}} \tag{10}\\
\mathbf{0}_{n_{y}} \\
-\mathbf{1}_{n_{c}}
\end{array}\right) \quad \boldsymbol{n}_{2}=\left(\begin{array}{c}
\left(\bar{x}-n_{x}\right) \mathbf{1}_{n_{y}}-\boldsymbol{y} \\
\mathbf{1}_{n_{y}} \\
\boldsymbol{c}
\end{array}\right)
$$

where $n_{c}=n_{x}+n_{y}-1, \boldsymbol{y}=\left(1, \ldots, n_{y}\right)^{\prime}$ and $\boldsymbol{c}=\left(1, \ldots, n_{c}\right)^{\prime}$. It is straightforward to check that $\boldsymbol{X} \boldsymbol{n}_{1}=\boldsymbol{X} \boldsymbol{n}_{2}=\mathbf{0}$ and that \boldsymbol{n}_{1} and \boldsymbol{n}_{2} are linearly independent. Hence

$$
\begin{equation*}
\boldsymbol{N}=\left\{\boldsymbol{n}_{1}, \boldsymbol{n}_{2}\right\} \tag{11}
\end{equation*}
$$

is a basis for $\mathcal{N}(\boldsymbol{X})$. Let $\hat{\boldsymbol{\theta}}_{1}$ and $\hat{\boldsymbol{\theta}}_{2}$ be two solutions of the normal equations for the CBD model with cohort effects. Then $\hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2} \in \mathcal{N}(\boldsymbol{X})$ and so

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2}=A \boldsymbol{n}_{1}+B \boldsymbol{n}_{2} \tag{12}
\end{equation*}
$$

for some A and B. Equating coefficients we arrive at equations (5) in the blog. The values of A and B for any two particular constraint systems can then be found by fitting the appropriate regression models.

You can find the null bases for the age-period-cohort and the APCI models in the talk referenced at the end of the blog.

