
Estimating standard errors in rank deficient models

We give some technical details on the estimation of standard errors in rank deficient models.
Further details can be found in the Appendix to Currie (2013).

We consider the following setup. We have a generalized linear model or GLM with model
matrix X, n × p, n > p, and rank p − q, q > 0; we denote the regression coefficients by
θ, p× 1. Then there exists a matrix H

XAug =

[
X
H

]
where H is q× p such that XAug has full column rank p. In our present application H is a

possible constraints matrix. We note in particular that H is not unique. We suppose that
Hθ = 0.

For example, in the APC model, X is nany× (na +ny +nc) where na is the number of ages,
ny is the number of years and nc = na + ny − 1 is the number of cohorts; the constraints
matrix H is 3× (na +ny +nc). See Macdonald et al (2018, chaps. 10-13) for some examples
of model matrices.

Define
∆ = X ′ŴX +H ′H .

Here Ŵ is a diagonal matrix of weights; in the case of a Poisson model the entries in Ŵ are
the fitted numbers of deaths. Note that, unlike X ′ŴX which is singular, ∆ is non-singular.
Now let

Ψ = ∆−1 −∆−1H ′(H∆−1H ′)−1H∆−1.

Then
Var(θ̂) = Ψ.

This is Corollary 2 in the Appendix to my 2013 paper. We note that Ψ is a singular variance
matrix; this occurs because X is not of full rank.

Now let’s look at the standard errors of the fitted values. The full covariance matrix, V say,
of the fitted values Xθ̂ is given by

V = Var(Xθ̂) = XVar(θ̂)X ′ = XΨX ′.

The matrix V can be rather large and if we are only interested in its diagonal elements, the
variances of the fitted values, then we have the following neat formula

diag{XΨX ′} = [(XΨ) ∗X]1p

where ∗ indicates element-by-element multiplication and 1p is a vector of 1s with length p.
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It is a simple matter to check numerically that V does not depend on the particular chosenH .
Jim Howie of the Mathematics Department here at Heriot-Watt has provided the following
elegant mathematical proof.

It is convenient to work with row vectors so here x will stand for a row vector rather than
the usual column vector. We first prove the following lemma.

Lemma: Let H , q × p, be such that

XAug =

[
X
H

]
has full column rank p. Let H̆ , q × p, be an alternative version of H such that

X̆Aug =

[
X

H̆

]
also has full column rank p. Then there exists an invertible matrix Y , p× p, such that

XY = X, and (1)

HY = H̆ . (2)

Proof: The proof is by construction of Y . Let U be a maximal linearly independent subset
of the rows of X. Now X is n× p with rank p− q so U is (p− q)× p. Define A as

A =

[
U
H

]
. (3)

Now the rows ofH are linearly independent of the rows ofX and hence of U . ThusA, p×p,
has rank p and so is non-singular. In the same way, the matrix B where

B =

[
U

H̆

]
(4)

is also p× p and non-singular. We define Y as

Y = A−1B (5)

and note that Y is non-singular. Evidently, from the definitions of Y , A and B, we have

AY = B

⇒ UY = U (6)

and HY = H̆ . (7)

Now let x be a row of X and let u1, . . . ,up−q be the rows U . Now x is linearly dependent
on the rows of U so

x = f1u1 + . . . + fp−qup−q
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for some coefficients f1, . . . , fp−q. Further, uiY = ui, for i = 1, . . . , p− q by (6), so

xX = f1u1Y + . . . fp−qup−qY

= f1u1 + . . . fp−qup−q

= x.

Since this holds for all rows ofX we haveXY = X and together with (7) we have proved (1)
and (2).

We have provided an example of a matrix Y which satisfies (1) and (2). In fact, such a
matrix is unique and is given by (5) where A and B are defined in (3) and (4) respectively.
For completeness, we demonstrate uniqueness in

Corollary: The matrix Y which satisfies (1) and (2) is unique.

Proof: We use the same notation as the lemma. Let Y ∗ be any matrix satisfying (1) and (2),
ie, XY ∗ = X and HY ∗ = H̆ .

XY ∗ = X

⇒ UY ∗ = U since the rows of U are a subset of the rows of X

⇒
[
U
H

]
Y ∗ =

[
U

H̆

]
⇒ AY ∗ = B by (3) and (4)

⇒ Y ∗ = A−1B

which is the definition of Y in (5).

We remarkA andB are not unique since they are dependent on the choice ofU ; nevertheless
the product A−1B is unique.

The main result on the invariance of XΨX ′ now follows easily.

Proposition: The variance matrix V = XΨX ′ does not depend on the choice of H .

Proof: We use the ˘ accent to denote the alternative definitions of H and ∆. We use (1)
and (2) repeatedly to obtain the following identities.

∆̆ = X ′ŴX + H̆ ′H̆

= Y ′X ′ŴXY + Y ′H ′HY ′

= Y ′∆Y , (8)

H̆∆̆−1H̆ ′ = HY (Y ′∆Y )−1Y ′H ′ by (8)

= H∆−1H ′ since Y is invertible. (9)
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Further,

Ψ̆ = ∆̆−1 − ∆̆−1H̆ ′(H̆∆̆−1H̆ ′)−1H̆∆̆−1

= (Y ′∆Y )−1 − (Y ′∆Y )−1Y ′H ′(H∆−1H ′)−1HY (Y ′∆Y )−1 by (8) and (9)

= Y −1∆−1Y ′−1 − Y −1∆−1H ′(H∆−1H ′)−1H∆−1Y ′−1 since Y is invertible

= Y −1ΨY ′−1, (10)

and finally

XΨ̆X ′ = XY −1ΨY ′−1X ′ by (10)

= XΨX ′

as required, since XY = X ⇒XY −1 = X.
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