Information Matrix
Filter
Posts feedUp close and intimate with the APCI model
This blog brings together two pieces of work. The first is the paper we presented to the Institute and Faculty of Actuaries, "A stochastic implementation of the APCI model for mortality projections", which will appear in the British Actuarial Journal. The second is a previous blog where I examined the role of constraints in models of mortality.
Senolytics: trials and judgements
Right-Censoring Rules!
A fundamental assumption underlying most modern presentations of mortality modelling (see our new book) is that the future lifetime of a person now age \(x\) can be represented as a non-negative random variable \(T_x\). The actuary's standard functions can then be defined in terms of the distribution of \(T_x\), for example:
\[{}_tp_x = \Pr[ T_x > t ].\]
New year, new insights
Happy New Year to all our readers!
Mme Calment's other secret?
The long shadow of the life table
Hedging or betting?
Last week I presented at Longevity 14 in Amsterdam. A recurring topic at this conference series is index-based approaches to managing longevity risk. Indeed, this topic crops up so reliably, one could call it a hardy perennial.
'D' is for deficiency
Smooth Models Meet Lumpy Data
Most of the survival models used by actuaries are smooth or piecewise smooth; think of a Gompertz model for the hazard rate, or constant hazard rates at individual ages. When we need a cumulative quantity, we use an integral, as in the cumulative hazard function, \(\Lambda_x(t)\):
\[ \Lambda_x(t) = \int_0^t \mu_{x+s} \, ds. \qquad (1) \]
Valuing liabilities with survival models
Regular readers of this blog will know that we are strong advocates of the benefits of modelling mortality in continuous time via survival models. What is less widely appreciated is that a great many financial liabilities can be valued with just two curves, each entirely determined by the force of mortality, \(\mu_{x+t}\), and a discount function, \(v^t\).