
Stephen Richards
Articles written by Stephen Richards
Age rating
Back in the days before personal computers, actuaries relied solely on published tables for their calculations. These were not just the mortality tables, but monetary functions of these tables known as commutation factors. My old student tables from 1980 list commutation and other factors at discount rates of 4%, 6% and 8% (the latter rate seems almost comically high by current standards).
How much data do you need?
Twin peaks
Fifty years of mortality improvements
Changing patterns of mortality
On the (funding) level
The alias problem
Division of labour
Season's Greetings to all our readers!
\[y = \frac{\log_e\left(\frac{x}{m}-sa\right)}{r^2}\]
\[\Rightarrow yr^2 = \log_e\left(\frac{x}{m}-sa\right)\]
\[\Rightarrow e^{yr^2} = \frac{x}{m}-sa\]
\[\Rightarrow me^{yr^2} = x-msa\]
\[\Rightarrow me^{rry} = x-mas\]
Signal or noise?
Each year since 2009 the CMI in the UK has released a spreadsheet tool for actuaries to use for mortality projections. I have written about this tool a number of times, including how one might go about setting the long-term rate. The CMI now wants to change how the spreadsheet is calibrated and has proposed the following model in CMI (2016a):
\[\log m_{x,y} = \alpha_x + \beta_x(y-\bar y) + \kappa_y + \gamma_{y-x}\qquad (1)\]